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Description 
The HSA8000 is a digital power processor. One IC offers high-speed analog peripherals, digital accelerators, event 
control, and digital processing. Its flexibility and performance enable designers to meet demanding compliance 
standards. Industrial, automotive, and renewable energy applications can benefit significantly from the enhanced 
performance and reduced component count it offers. The solution addresses many power conversion applications. 
It easily fits into advanced topologies for AC-DC inverters, battery chargers, and isolated DC-DC converters.  
 
The HSA8000 has an advanced mixed-signal architecture. The core is a 32-bit RISC 50 MHz micro-processor. A 
rich set of high-performance digital power peripherals supports the core. Communications, data memory, and 
general-purpose inputs and outputs (GPIO) are also provided.   
 
The HSA8000 is a fully software-programmable platform. Programming enables control, monitoring and 
optimization. Those features allow a design solution to meet aggressive requirements. It also allows for easily 
differentiated products for competitive markets.  Huada bundles a software development environment with 
application-specific evaluation hardware to enable customers to achieve faster time-to-market.    
 

The HSA8000 arose from extensive experience in power systems design. Those systems frequently require 
optimization of multiple voltages through control loops with adaptive dead-time control of multiple power trains 
and phases.  For example, Totem-Pole PFC, LLC, and Interleaved PFC need such complex control schemes. Here, 
the core architecture optimizes processor usage by using high speed analog peripherals, digital accelerators and a 
high performance PLL. The peripherals control high speed loop functions leaving the digital core processor free to 
maintain low-speed functions. Those functions include slower control loops, protection, optimization and 
housekeeping. The HSA8000’s peripheral set is the industry’s most complete single-chip offering.  It includes 
configurable high-speed voltage/current sensing, and high-speed comparators (10nS), a variety of high-
performance ADCs, DACs, programmable filtering, a multi-event interrupt-based timing engine, a high 
performance digital PLL, and PWM control for up to 8 power devices are integrated into a single digital power 
processor. 
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 Functional Block Diagram  

Figure 1 Functional block diagram 
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Figure 2 -High level block diagram of HSA8000 Switching Engine 
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Functional Description 
The HSA8000 is a mixed-signal integrated circuit optimized for power conversion using digital control methods. 
The analog inputs can create timing events using high speed comparators while monitoring voltages and currents 
using three independent ADCs. The digital peripherals of which the Switching Engine is the heart can drive the 
gate signals of complex power applications. The functional diagram, in Figure 1, gives an overview of the 
HSA8000. The 32-bit RISC core oversees the configuration and monitoring of the peripherals while implementing 
control algorithms and state machines not possible in purely analog circuits.  

Analog Interface 
The HSA8000 is a highly integrated IC with rich power control-centric analog features:  

- 18 analog input pins  
- 1 sixteen-channel, 10-bit, 1.4 MS/s ADC with digital filters 
- 2 four-channel, 10-bit, 1.4 MS/s ADCs with digital filters 
- 17 10 ns fast comparators for event generation and fault detection 
- 16 10-bit analog DACs for comparators internal references  
- 1 10-bit analog DAC for debagging 
- 4 6-bit analog DACs for level shifting 
- 2 differential high-speed current sensing amplifier interfaces 
- 1 differential high gain amplifier  
- 14 programmable 4th order anti-alias low-pass filters 
- 1 25 kHz low pass filter 
- Internal temperature sensor  

All comparator outputs are connected to the Event Bus, whereas all ADCs and DACs are connected to the AMBA 
bus. HSA8000 has 18 analog inputs that can be used for sensing the controls signal for different power 
applications.    
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Analog inputs ANx_CMPx (x = 0 to 3) 
These are dual-function analog inputs feeding ADC0 and two high speed comparators as shown in Figure 3. The 
level shift and gain stage allow small signals to be scaled to the 0 - 1.8V input range of both the ADC0 and 
comparators. The shifting is done by the level shift DAC. The amplifier has four gains: 1, 2, 4 or 8. To reduce the 
impact of the switching ripple common for the power supply signals, the ADC0 input can be optionally filtered by 
a 4th order low pass filter 25 kHz, 50 kHz, 100 kHz or by passed. 
For performing hysteretic current or voltage control or fault detection, the amplified signal is also sent to the dual 
comparator block. The block has two comparators. Each comparator has its own DAC reference which can be set 
or controlled through software to implement a dynamic behavior and advanced control methods. The comparators’ 
outputs are sent to the Source Bus and to SWE_DEBUG.  

   

   
Figure 3 - Blocks associated with analog inputs ANx_CMPx (x = 0 …3) 

The IC_CONFIG registers are used to setup the input signal gain and bandwidth as well as the comparator 
hysteresis (x = 0 to 3).  
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 PERIPHERAL.FIELD_NAME Default 

Bx IC_CONFIG->ANx_CMPx_GAIN__U21 00b 
Cx IC_CONFIG->ANx_FILTER_BW__U22 00b 

1Amplifier gains: 00b = ×1, 01b = ×2, 10b = ×4, and 11b = ×8. 
2Low pass filter bandwidth settings: 00b = 25 kHz, 01b = 50 kHz, 10b = bypass, and 11b =100 kHz 

 
 

The DAC registers provide the level shifting of the input voltage and comparator references (x=0 to 3). 
 
 
 
 
 

To enable the comparator used the following bids: 

 

 
1for x= 0-3. 

The output of the comparators could be set to high by following bits: 

 

 
1for x= 0-3. 

Analog inputs CMPx (x = 4, 5 and 7)  
These analog inputs are connected to three high speed comparators as shown in Figure 4. The comparators can 
create events for controlling the event driven timers that are switching the powertrain switches.  
For performing hysteretic charge control or dead time optimization, the input signal is sent to two comparators 
POS_COMP and NEG_COMP. The references to the comparators are set by their corresponding DACs. To 
implement the dynamic behavior and perform advanced control methods, the comparators’ references can be set or 
controlled through the software. The DACs range can be chosen to be 1.8 V, 3V or AN7_DACVR_BUF. The 
CMPx block has also a zero-crossing comparator, ZC_COMP that compares the input signal with signals applied 
to AREF pin, AN12_BUF, AN13_ BUF or 0 V.  
The comparator output CMPx _NEG_COMP is sent to the Source Bus while only one output of the comparators 
POS_COMP and ZC_COMP is selected to the Source Bus and SWE_DEBUG. By default, the comparator 
POS_COMP is selected to the Source Bus and SWE DEBUG. 

 PERIPHERAL.FIELD_NAME Default 
Ax ANALOG_DAC->ANx_CMPX_LEVEL_SHIFT__U6 0 
Dx ANALOG_DAC->CMPx_POS_COMP__U10 0 
Ex ANALOG_DAC->CMPx_NEG_COMP__U10 0 

PERIPHERAL.FIELD_NAME Default 
SOURCE_BUS-> CMPx_POS_COMP_ENABLE__U11 0 

SOURCE_BUS-> CMPx_NEG_COMP_ENABLE__U11 0 

PERIPHERAL.FIELD_NAME Default 
SOURCE_BUS-> CMPx_POS_COMP_FORCE_HIGH__U11 0 

SOURCE_BUS-> CMPx_NEG_COMP_FORCE_HIGH__U11 0 
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Figure 4- Blocks associated with analog inputs CMPx (x = 4, 5 and 7)  

The control of the blocks is done by the CMPx registers fields. 

 

 PERIPHERAL.FIELD_NAME Default 
Ax IC_CONFIG-> CMPx_ZC_REF__U21 00b 
Bx IC_CONFIG->CMPx_ZC_DESABLE__U22

 01b 
Dx IC_CONFIG->CMPx_DAC_REF__U23 01b 

 

1ZC comparator reference: 00b = AREF, 01b = AN12_BUF, 10b = AN13_BUF, and 11b = 0 V. 
2Enabls the ZC comparator output to be connected to Source Bus. 0b = ZC comparator, 1b = POS comparator. 
3 DACs’ references: 00b = 1.8 V; 01b = AN7_DACVR_BUF; 10b = 3 V, and 11b =1.8 V. 
The DACs in the CMPx blocks are set by the following fields: 

 
 
 
 

To enable the comparators used the following bids: 

 PERIPHERAL.FIELD_NAME Default 
Cx ANALOG_DAC-> CMPx_POS_COMP__U10 540 
Ex ANALOG_DAC-> CMPx_NEG_COMP__U10 540 
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1for x= 4, 5 and 7. 

The output of the comparators could be set to high and low by following bits: 

 

 

 
1for x= 4-7. 

 

Analog inputs AN4, AN5, AN6, and AN7_DACVR 
The inputs are intended for sensing of low frequency signals by ADC2 which data is controlling the powertrains. 
The blocks associated with them are shown in Figure 5. The signals applied to the blocks can be optionally 
subtracted by a signal applied to AREF input. To reduce the impact of the switching ripple common for the power 
supply signals, the ADC2 input can be optionally filtered by a 4th order low pass filter 25 kHz, 50 kHz, or 100 
kHz. 

  
Figure 5 - Blocks associated with analog inputs AN4, AN5, AN6, and AN7_DACVR, inputs. 

The control of the blocks is done by the fields of the AN4, AN5, AN6, and AN7_DACVR registers.  
 

 PERIPHERAL.FIELD_NAME Default 
Ai IC_CONFIG-> AN4_REF__U11 0b 
Bi IC_CONFIG-> AN4_FILTER_BW__U22 00b 

1Selector input select: 0b = 0 V and 1b = AREF  
2 Low pass filter bandwidth settings: 00b = 25 kHz, 01b = 50 kHz, 10b = bypass, and 11b =100 kHz 
 
The subtractor output of the AN7_DACVR_BUF, can be selected to set the DACs range of the CMPx (x= 4…7) 
blocks (see Figure 4 for the AN7_DACVR_BUF signal). 

PERIPHERAL.FIELD_NAME Default 
SOURCE_BUS-> CMPx_POS_COMP_ENABLE__U11 0 

SOURCE_BUS-> CMPx_NEG_COMP_ENABLE__U11 0 

PERIPHERAL.FIELD_NAME Default 
SOURCE_BUS-> CMPx_POS_COMP_FORCE_HIGH__U11 0 

SOURCE_BUS-> CMPx_NEG_COMP_FORCE_HIGH__U11 0 

SOURCE_BUS-> CMPx_POS_COMP_FORCE_LOW__U11 0 

SOURCE_BUS-> CMPx_NEG_COMP_FORCE_LOW__U11 0 
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Analog inputs AN10P/N and AN11P/N 
Figure 6 shows three blocks, two external current sense interfaces, XCSI0 and XCSI1, and high gain amplifier, 
HGA, associated with analog inputs AN10P/N and AN11P/N. The XCSI0 and XCSI1 blocks are designed to work 
with fully-differential isolation amplifier AMC1100 (used for current measurements). The blocks contain a 
differential to single ended programmable low gain amplifier. To reduce the impact of the switching ripple 
common for the power supply signals, the ADC2 input can be optionally filtered by a 4th order low pass filter 25 
kHz, 50 kHz, or 100 kHz. The AN11P/N inputs are also connected to the HGA block. The block has a 
programmable high gain amplifier and a 25 kHz low pass filter.  

The low gain amplifier settings are 0.45, 0.4, or 0.3. The input range voltage of XCSI0 and XCSI1 blocks is           
-2_V to +2 V differentially applied with a common mode of 1.2 V. When the differential signal is zero, the inputs 
ANxP and ANxN have the same voltage level equal to 1.2 V. When the differential signal is 2 V the voltage on the 
input ANxP referenced to GND is: 1.2 V+1 V = 2.2 V and the voltage on input ANxN is: 1.2 V-1 V= 0.2 V. Thus, 
when the differential input range voltage is -2_V to +2 V with 1.2 V common mode and the amplifier gain set to 
0.45, the amplifier multiplies this 0.2 V to 2.2 V by 0.45 and remove the common mode component. As a result, 
the amplifier output voltage is somewhere between -0.9 V and +0.9 V. Since, the ADC input range is 0 V to 1.8 V, 
0.9 V is added to shift the amplifier output voltage to be in ADC2 range (see Figure 6). 

The HGA block gain settings are 30, 60, or 120. The HGA allows small differential signals to be amplified, shifted 
with 0.9 V for 0_V to 1.8 V ADC2 range. The HGA input range depends on the gain settings.   

   
Figure 6 - Blocks associated with analog inputs AN10P/N and AN11P/N inputs 
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By default, the amplifiers of the XCSI0 and XCSI0 blocks are enabled and the HGA block is disabled.  If the 
blocks are not used, to save energy they can be also disabled. 
To prevent noise from the HGA to XCSI1 blocks and vice versa only one of them should be enabled. The XCSI0 
and XCSI1 blocks are enabled or disabled by the ANx register fields (x=10 and 11).  
 

 PERIPHERAL.FIELD_NAME Default 
A IC_CONFIG-> ANx_OPAMP_DISABLE__U21 00b 

1 Enable XCSIx amplifier: 0b = enable; 1b= disable. 

 
The HGA block is enabled by: 

 PERIPHERAL.FIELD_NAME Default 
E IC_CONFIG-> AN11_HGA_ENABLE__U21 00b 

1 Enable HGA block: 1b = enable; 0b= disable. 
 
The XCSI0 and XCSI1 blocks control is done by the ANx register fields (x = 10 and 11).  

 PERIPHERAL.FIELD_NAME Default 
B IC_CONFIG->ANx_GAIN__U21 00b 
D IC_CONFIG-> AN11_FILTER_BW__U22 00b 

1 Chopper amplifier gains: 00b = ×0.45, 01b = ×0.4, 10b = ×0.3, and 11b =×0.3. 
2 Low pass filter bandwidth settings: 00b = 25 kHz, 01b = 50 kHz, 10b = bypass, and 11b =100 kHz 
 
The HGA gain is set by the following register: 

 PERIPHERAL.FIELD_NAME Default 
F IC_CONFIG-> AN11_HGA_GAIN1 00b 

1 HGA settings: 00b = ×120, 01b = ×60, 10b = ×60, and 11b = ×30. 

 
The input signal of the XCSI and HGA blocks can be inverted by the following fields: 

 PERIPHERAL.FIELD_NAME Default 
C IC_CONFIG->AN10_AN11_INVERT 0b 
G IC_CONFIG->AN11_HGA_INVERT 0b 

Analog inputs AN12_ACP and AN13_ACN 
The inputs are intended for sensing of low frequency signals specially AC grid voltages. The blocks associated 
with them are shown in Figure 7. The signals applied to the blocks can be optionally subtracted by a signal applied 
to AREF input. To reduce the impact of the switching ripple common for the power supply signals, the ADC1 
input can be optionally filtered by a 4th order low pass filter 25 kHz, 50 kHz, or 100 kHz. The unfiltered signals 
are also connected to the zero-crossing comparator (ZCC) which output signal is used by the AC PLL block.  
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Figure 7 - Blocks associated with analog inputs AN12_ACP and AN13_ACN. 

The control of the blocks is done by the ANx register fields (x = 12 and 13).  
 

 PERIPHERAL.FIELD_NAME Default 
Ax IC_CONFIG-> ANx_ACP_REF__U1 0b 
Bx IC_CONFIG-> AN12_FILTER_DISABLE__U21 00b 

 

1 Low pass filter settings: 00b = 25 kHz, 01b = 50 kHz, 10b = bypass, and 11b =100 kHz 

Analog to digital converters ADC0, ADC1 and ADC2  
HSA8000 has three 10-bit analog to digital converters that convert the analog signals into digital. The ADC0 and 
ADC1 have four input and four output channels, while ADC2 has sixteen input and eight output channels.  By 
default, the ADC clock is 20 MHz, but can be reduced to save power. It takes 14 clock cycles to convert, which 
results in a maximum conversion rate fs_max = 1.429 MHz. When n channels are sampled, then the sampling 
frequency is reduced by the same factor: 
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𝑓௦ =
𝑓௦_௫

𝑛
 

Each ADC channel output includes a digital filter. The raw data from the ADC occupies bits 15 … 6, and the bits 
5 … 0 are 0. If the digital filtering is enabled, then all the bits are used. The filter adds more resolution hence the 
bits 5 … 0 will be populated, but the MSB stays bit 15. The filter transfer function is similar to a first order RC 
low pass filter.  
The 3-dB bandwidth, B, is calculated by the following equation: 

𝐵 = −
𝑓௦

2𝜋
ln (1 −

𝛼

4096
) 

 where 0 < α < 255 value set in the corresponding ADC register: 
- For ADC0 the fields are: 

  
PERIPHERAL.FIELD_NAME Default 

ADC->ADC0_ANx_ALPHA__U81 255 
1where x =0 …3 the fields are: 

 
- For ADC1 

PERIPHERAL.FIELD_NAME Default 
ADC->ADC1_ANx_FLT_ALPHA__U81 255 
ADC->ADC1_ANx_BUF _ALPHA__U81 255 

1where x =0 …3 

 
- For ADC2  

PERIPHERAL.FIELD_NAME Default 
ADC->ADC2_CHANALx_ALPHA__U81 255 

 
1where x channel number. 

 
When α =255 the filter is bypassed, while when α = 0 the filter will latch the current value indefinitely. For a given 
bandwidth and sampling frequency, the value of α that should be set in the register is calculated by the equation: 

𝛼 = ቆ1 − 𝑒
ି

ଶగ
ೞ ቇ 4096 

For example, let assume that the desired filter 3-dB bandwidth is 10 kHz and the sampling frequency is fs = 1.429 
MHz, then substituting in the equation above, the value that should be written in the filter register is 176. 
 

The unfiltered output of every ADC channel is connected to two digital comparators (See Figure 8 and Figure 9). 
The signal is compared between the maximum and minimum values. When the signal is larger than the maximum 
or smaller than the minimum values, a bit of the corresponding channel is set to 1 and exported to the Source Bus. 
This bit is sticky and is cleared manually. The status for the minimum and maximum values of the ADC0 and 
ADC1 comparators are OR and shown in field Cx (Figure 8). For ADC2, the comparators’ status for the minimum 
and maximum values are and shown in Cx and Dx fields (Figure 9). 
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Figure 8 – ADC0 and ADC1 Output Status circuit 

The fields for setting the maximum and minimum value, report and register used to set and clear the ADC output 
status are shown in the table below:  

- For ADC0 the fields are: 

 

 

 

where x = 0 … 3. 

- For ADC1 the fields are: 

 

 

 

 

 

 

 

where x= 12 and 13. 

 PERIPHERAL.FIELD_NAME Default 
Ax ADC -> ADC0_ANx_COMP_MAX__U16 65472 
Bx ADC -> ADC0_ANx_COMP_MIN__U16 0 
Cx ADC -> ADC0_ANx_COMP_MIN_MAN_STATUS__U1 0b 

 ADC -> ADC0_ANx_COMP_STATUS_CLEAR__U1 0b 

 PERIPHERAL.FIELD_NAME Default 

Ax 
ADC -> ADC1_ANx_FLT_COMP_MAX__U16 65472 
ADC -> ADC1_ANx_BUF_COMP_MAX__U16 65472 

Bx 
ADC -> ADC1_ANx_FLT_COMP_MIN__U16 0 
ADC -> ADC1_ANx_FLT_COMP_MIN__U16  

Cx 
ADC -> 
ADC1_ANx_FLT_COMP_MIN_MAX_STATUS__U1 

0b 

ADC -> 
ADC1_ANx_BUF_COMP_MIN_MAX_STATUS__U1 

 

 ADC -> ADC1_ANx_FLT_COMP_STATUS_CLEAR__U1 0b 

 ADC -> ADC1_ANx_BUF_COMP_STATUS_CLEAR__U1  
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Figure 9 -ADC2 Output status circuit 

- For ADC2 the fields are: 

 

 

 

 

where x = 0 … 7. 

 The digital comparators of ADC0, ADC1, and ADC2 can be forced high and low with the following registers: 

- For ADC0 the fields are: 

 
 

where x = 0 …3.  

- For ADC1 the fields are: 

 
 
 

 

xhere x = 12 and 13.  

- For ADC2 the fields are: 

 

 

where x = 0 …7.  

To read any ADC, a read request should be sent by the following register: 

 

 

 PERIPHERAL.FIELD_NAME Default 

Ax ADC -> ADC2_CHANNELx_COMP_MAX 65472 
Bx ADC ->ADC2_CHANNELx_COMP_MIN 0 
Cx ADC -> ADC2_CHANNELx_COMP_MAX_STATUS__U1 0b 
Dx ADC -> ADC2_CHANNELx_COMP_MIN_STATUS__U1 0b 

 ADC -> ADC2_CHANNELx_COMP_STATUS_CLEAR__U1 0b 

PERIPHERAL.FIELD_NAME Default 
SOURCE_BUS->ADC0_ANx_COMP_STATUS_FORCE_HIGH__U1 0 
SOURCE_BUS->ADC0_ANx_COMP_STATUS_FORCE_HIGH__U1 0 

PERIPHERAL.FIELD_NAME Default 
SOURCE_BUS-> ADC1_ANx_FLT_COMP_STATUS_FORCE_HIGH__U1 0 
SOURCE_BUS-> ADC1_ANx_BUF_COMP_STATUS_FORCE_HIGH__U1 0 
SOURCE_BUS-> ADC1_ANx_FLT_COMP_STATUS_FORCE_LOW__U1 0 
SOURCE_BUS-> ADC1_ANx_BUF_COMP_STATUS_FORCE_LOW__U1 0 

PERIPHERAL.FIELD_NAME Default 
SOURCE_BUS-> ADC2_CHANNEL0_COMP_STATUS_FORCE_HIGH__U1 0 
SOURCE_BUS-> ADC2_CHANNEL0_COMP_STATUS_FORCE_LOw__U1 0 

PERIPHERAL.FIELD_NAME Default 
ADC ->READ_REQUEST__U1 0b 



 DPD1210 V.1 User Guide 

 

 

17 

After the request is sent and the data is ready to be read, the register value is set to zero automatically. 

The ADC clocks and busy can be exported on a GIPO pin by the DEBUG selector. 

 

 

 

 

x= 0 to 7 (see section DEBUG).  

ADC0 

The ADC0 digitizes signals coming from the ANx_CMPx (x = 0 to 3) inputs. Figure 10 shows the ADC0 block 
diagram.  ADC0 has four sequences. For initializing the ADC0, first the number of time slots should be specified: 

00b:  all four of the time slots are read (0, 1, 2, 3, 0, 1, 2, 3, 0, ...) 
01b:  only first of the time slots is read (0, 0, 0, 0, 0, 0, ...) 
10b: only the first two time slots are read (0, 1, 0, 1, 0, 1, ...) 
11b: only the first three time slots are read (0, 1, 2, 0, 1, 2, …) 

The second step is to select the channels for the time slots: 
00:  AN0_FLT 
01:  AN1_FLT 
10: AN2_FLT 
11: AN3_FLT 

 
Figure 10 - ADC0 block diagram. 

The registers’ fields for ADC0 are shown in the table below: 

 PERIPHERAL.FIELD_NAME Default 
A ADC ->ADC0_TIME_SLOTS__U2 00b 

B0-3 

ADC -> ADC0_TIME_SLOT0 _ SELECTION __U2 00b 
ADC -> ADC0_ TIME_SLOT1 _SELECTION __U2 01b 
ADC -> ADC0_ TIME_SLOT2 _SELECTION __U2 10b 
ADC -> ADC0_ TIME_SLOT3 _SELECTION __U2 11b 

C0-3 ADC->ADC0_CHx_ALPHA__U8 255 
D0-7 ADC ->ADC0_DATA_CHx__U16 R/O 

 

Example 1: Let assume that the signals from inputs AN0_CMP0 and AN3_CMP3 should be read by ADC0. Only 
two time slots are to be used (i.e. time slots 0 and 1). AN0_CMP0 will be assigned to time slot 0 and AN3_CMP3 
will be assigned to time slot 1. Also apply 1kHz bandwidth digital filters to the selected channels. 

 

PERIPHERAL.FIELD_NAME Selections 
DEBUG ->SIGNALx 5 = ADC0_CLK 

6 = ADC1_CLK 
7 = ADC2_CLK 
8 = ADC0_BUSY 
9 = ADC1_BUSY 
10 = ADC2_BUSY 
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Solution: The registers settings are as follow:  

The time slots number is 2.  

ADC0_TIME_SLOTS__U2 = 2 

Assign channel 0 (AN0_FLT) to time slot 0: 

ADC0_ TIME_SLOT0 _SELECTION __U2 = 0 

Assign channel 3 (AN3_FLT) to time slot 1: 

ADC0_ TIME_SLOT1 _SELECTION__U2 = 3 

Assign α for each channel: 

ADC0_CH0_ALPHA __U8 = 0x24 

ADC0_CH3_ALPHA __U8 = 0x24 

 

Example 2: Let assume that the signals from inputs AN0_CMP0, AN2_CMP2, and AN3_CMP3 should be read by 
ADC0. Let’s assume that it is desired to read AN0_CMP0 at twice the rate versus the other two signals. All time 
slots are used. AN0_CMP0 will be assigned to time slots 0 and 2, AN2_CMP2 will be assigned to time slot 1 and 
AN3_CMP3 will be assigned to time slot 3. Also apply 1kHz bandwidth digital filters to the selected channels. 

Solution: The registers settings are as follow: 

The time slots number is 4, hence write 0 into the designated register. 

ADC0_TIME_SLOTS__U2 = 0 

Assign channel 0 (AN0_FLT) to time slot 0 and time slot 2, to get even sampling at twice the rate: 

ADC0_TIME_SLOT0 _SELECTION __U2 = 0 

ADC0_TIME_SLOT2 _SELECTION __U2 = 0 

Assign channel 2 (AN2_FLT) to time slot 1: 

ADC0_TIME_SLOT1 _SELECTION __U2 = 2 

Assign input 3 (AN3_FLT) to time slot 3: 

ADC0_TIME_SLOT3 _SELECTION __U2 = 3 

Assign α for each channel: 

ADC0_CH0_ALPHA__U8 = 0x47/2 – it is sampled at twice the rate vs the other two channels, hence alpha should be halved to get the same bandwidth 

 – irrelevant, channel 1 is not used hereADC0_CH2_ALPHA = 0x47 

ADC0_CH3_ALPHA__U8 = 0x47 

ADC1 

The ADC1 digitizes signals coming on the AN12_ACP and AN13_ACN inputs. Figure 11 shows the ADC1 block 
diagram.  ADC1 has four time slots for measuring the input filtered and unfiltered signals. For initializing of 
ADC1, first the number of time slot should be specified: 

00b:  all four of the time slots are read (0, 1, 2, 3, 0, 1, 2, 3, 0, ...) 
01b:  only first of the time slots is read (0, 0, 0, 0, 0, 0, ...) 
10b: only the first two time slots are read (0, 1, 0, 1, 0, 1, ...) 
11b: only the first three time slots are read (0, 1, 2, 0, 1, 2, …) 

 
The second step is to select the channel for the time slot: 
00b:  AN12_FLT 
01b:  AN13_FLT 
10b: AN12_ACP_BUF 
11b: AN13_ACN_BUF 
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Figure 11 - ADC1 block diagram. 

The registers’ fields for ADC1 are shown in the table below: 

 PERIPHERAL.FIELD_NAME Default 
A ADC ->ADC1_TIME_SLOTS__U2 00b 

B0-3 

ADC -> ADC1_TIME_SLOT0 _SELECTION __U2 00b 
ADC -> ADC1_TIME_SLOT1 _SELECTION __U2 01b 
ADC -> ADC1_TIME_SLOT2 _SELECTION __U2 10b 
ADC -> ADC1_TIME_SLOT3 _SELECTION __U2 11b 

C0-3 ADC-> ADC1_CHx_ALPHA __U8 255 
D0-7 ADC ->ADC1_DATA_CHx__U16 R/O 

ADC2 

Figure 12 shows the ADC2 block diagram.  ADC2 has eight time slots. The initialization of ADC2 is done in three 
steps. First the number of time slots is selected: 

000b - eight of the time slots are read (0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, ...) 
001b - only the first of the time slots is read (0, 0, 0, 0, 0, 0, ...) 
010b - only the first two time slots are read (0, 1, 0, 1, 0, 1, ...) 
011b - only the first three time slots are read (0, 1, 2, 0, 1, 2, 0, ...) 
100b - only the first four time slots are read (0, 1, 2, 3, 0, 1, 2, 3, 0, ...) 
101b - only the first five time slots are read (0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, ...) 
110b - only the first six time slots will be read (0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, ...) 
111b - only the first seven time slots are read (0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, ...) 

Then the channels associated for each time slot are selected.   
000b – CH0 
001b – CH1 
010b – CH2 
011b – CH3 
100b – CH4 
101b – CH5 
110b – CH6 
111b – CH7 

The third step is to select the input for the corresponding channel: 
0000b - Internal Temperature 

0001b - AN4_FLT 

0010b - AN5_FLT 
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0011b - AN6_FLT 

0100b - AN7_FLT 

0101b - High Impedance (no connect) 

0110b - 1V8A 

0111b – AN10_FLT 

1000b – AN11_FLT 

1001b – Reserved 

1010b – Reserved 

1011b - GND 

1100b - AN11_HGA 

1101b - CAL_DAC 

1110b - Reserved 

1111b – Reserved 

 
Figure 12 - ADC2 block diagram. 
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The registers’ fields for ADC2 are shown in the table below: 

 PERIPHERAL.FIELD_NAME Default 
A ADC ->ADC2_TIME_SLOTS__U3 000b 

B0-3 

ADC -> ADC2_ INPUT_CH0__U4 0000b 
ADC -> ADC2_ INPUT_CH1__U4 0001b 
ADC -> ADC2_ INPUT_CH2__U4 0010b 
ADC -> ADC2_ INPUT_CH3__U4 0011b 
ADC -> ADC2_ INPUT_CH4__U4 0100b 
ADC -> ADC2_ INPUT_CH5__U4 0101b 
ADC -> ADC2_ INPUT_CH6__U4 0110b 
ADC -> ADC2_ INPUT_CH7__U4 0111b 

C0-3 

ADC -> ADC2_TIME_SLOT0 _SELECTION__U3 000b 
ADC -> ADC2_TIME_SLOT1 _SELECTION__U3 001b 
ADC -> ADC2_TIME_SLOT2 _SELECTION__U3 010b 
ADC -> ADC2_TIME_SLOT3 _SELECTION__U3 011b 
ADC -> ADC2_TIME_SLOT4 _SELECTION__U3 100b 
ADC -> ADC2_TIME_SLOT5 _SELECTION__U3 101b 
ADC -> ADC2_TIME_SLOT6 _SELECTION__U3 110b 
ADC -> ADC2_TIME_SLOT7 _SELECTION__U3 111b 

D0-7 ADC->ADC2_CHx_ALPHA__U8 255 
F0_7 ADC ->ADC2_DATA_CHx__U16 R/O 

 

Analog DACs  
The IXC 2 has the following analog DACs: 

- 16 10-bit DACs for comparators internal references  
- 1 10-bit DAC for debugging 
- 4 6-bit DACs for level shifting 

The DACs values for the comparator references and debugging, 𝐷𝐴𝐶  is calculated by: 

𝐷𝐴𝐶 =
ଵଶସ∗ೝ

ଵ.଼
  

where 𝑉is the desire voltage reference.  
 
The DAC value for level is calculated by: 

𝐷𝐴𝐶 =
ସ∗ೞ

ଵ.଼
  

where  𝑉௦௧is the level shifting voltage.  

Temperature sensor  
The HSA8000 temperature is measured by a temperature sensor. The sensor is designed to change its output 
voltage based upon HSA8000 temperature. The output voltage is measured by ADC2. The relationship between 
the temperature and the voltage is linear. The slope is approximately a constant while the offset is process 
dependent.  Therefore, the temperature sensor requires one-point calibration.  
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Digital Interface 
The digital interface processes the analog signals sensed by the analog interface and sends signals to control the 
power train switches. The digital interface includes the following blocks: 

- CPU 
- ROM and RAM 
- Switch Engine 
- I/O Block 
- Grid PLL 
- COMMs 
- Serial Structure interface 
- Watchdog system 
- Math Accelerators (sin, cos, sqrt, divider).  
- RTC  
- ADCs 
- DACs. 
- DEBUG infrastructure 

As it is shown in Figure 1, there are two buses for communication between the different HSA8000 blocks: 
- AMBA Bus (32 bit/ 50 MHz) 
- EVENT SOURCE Bus. 

The AMBA BUS connects all HSA8000 blocks to the CPU. The EVENT SOURCE BUS connects the analog 
interface and the I/O block to the switching engine. The EVENT SOURCE BUS is carrying data from the 
comparators, GPIOs, and other digital AUX sources to the timing engine and is synchronized with 100 MHz 
clock. In the following section the functionality of the digital interface blocks is presented.  

CPU    

The 32-bit RISC micro-controller operates at 50 MHz with 64 kiB internal RAM, 4 kiB ROM (boot loader) and 
provides the execution of code for customizable control algorithms.  
The CPU core is an EnSilica 32-bit RISC processor. For more information, refer to the EnSilica web site at 
http://www.ensilica.com. 

The specific configuration used is outlined in the following table. The interface to the various functional blocks is 
through the AMBA bus. 
 

 
 
 

Configuration type Configuration options used 

Architectural BITS:32, REGISTERS:16, von Neumann 

Clock speed 50 MHz maximum 

Memory ENDIAN (Little), 32-bit byte-addressable 
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Interrupts 
HSA8000 has 6 maskable interrupts which are defined in Solantro_interrupt_map.h.  The sources of the interrupts 
are as follow: 

 UART  
 SPI 
 GPIO 
 UART_HDLC 
 TIMER 
 AC_PLL 

 There is only one level of interrupts, but each interrupt source can have its own handler function. Each interrupt 
has an interrupt service routine (ISR) defined somewhere in the code memory.  The microcontroller makes use of 
interrupt vector table to find the starting address of ISRs. The interrupt vector table defines where the code of a 
particular interrupt routine is located in microcontroller memory. When an event occurs, the controller generates a 
hardware interrupt. The interrupt forces the controller's program counter to jump to a specific address in the 
program memory. At this memory location is installed a special function known as an interrupt service routine 
(ISR) or an interrupt handler.  

Thus, upon generating a hardware interrupt, the program execution jumps to the interrupt handler and executes the 
code in that handler. When the handler is done, then program control returns the controller to the original program 
and continue with its execution. Therefore, a hardware interrupt allows the controller to interrupt an existing 
program and react to some external hardware event and then continue with the program. 

The vectors to the functions are stored in the exception table which is defined in exception.h.  The interrupt.h file 
defines functions for interrupts’ enabling and masking. The following code ncludes the exception and interrupt 
headers. 

#include <esirisc/esirisc.h> 

Interrupt Initialization Function 

Interrupt initialization function is called once from the MAIN INIT section. It creates a local temporary pointer to 
hold the base address of the exception table. 

Handler Function 

The handler function prototype is: 

ESI_EXCEPTION_HANDLER void Interrupt_Handler(void); 

The function should clear any hardware flags in the peripheral which initiated the interrupt, handle the interrupt 
and finish by setting an acknowledge mask. The timer peripheral mask is used below as an example. 

esi_interrupt_acknowledge_mask(PERIPHERAL_INTERRUPT__MASK__TIMER); 

Vector Table 

The vector table is an array of pointers for various exceptions including interrupts. When a handler function has 
been defined for an interrupt then the pointer can be updated with the following code. 
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esi_exception_table_t *vectors; 

vectors = esi_exception_get_exception_table(); 

vectors->interrupt[PERIPHERAL_INTERRUPT__MASK__TIMER] = Interrupt_Handler; 

Interrupt Mask 

The interrupt mask allows the hardware signal to generate an exception for the CPU to handle. The following code 
is an example of enabling the mask for the timer peripheral. 

esi_interrupt_set_mask(esi_interrupt_get_mask() | PERIPHERAL_INTERRUPT__MASK__TIMER); 

Enable 

Once the functions have been defined, the vectors updated, the peripherals initialized and enabled then the 
interrupts can be enabled with the following command: 

esi_interrupt_enable(); 

Example 

Below is an example of AC_PLL interrupt and handling: 

#include "iso646.h"                // Used for C++ operator synonyms. 
#include "stdbool.h"               // Used for true / false. 
 
#include <esirisc/esirisc.h>       // enSilca library used for interrupt control 
 
#include "solantro_interrupt_map.h" 
#include "solantro_peripheral_map.h" 
 
ESI_EXCEPTION_HANDLER void PLL_Interrupt_Handler(void); 
 
void interrupt_init(void) { 
    esi_exception_table_t *vectors; 
 
    vectors = esi_exception_get_exception_table(); 
    vectors->interrupt[PERIPHERAL_INTERRUPT__INDEX__AC_PLL] = 
PLL_Interrupt_Handler; 
 
    // The PLL has multiple sources which can trigger an interrupt. 
    // Enabling just the two below. 
    PERIPHERAL.AC_PLL->RECONSTRUCTED_AC_SAMPLES_IRQ_ENABLE__U1 = 1; 
    PERIPHERAL.AC_PLL->RECONSTRUCTED_AC_CROSSING_IRQ_ENABLE__U1 = 1; 
    
 esi_interrupt_set_mask(esi_interrupt_get_mask() | 
PERIPHERAL_INTERRUPT__MASK__AC_PLL); 
} 
 
ESI_EXCEPTION_HANDLER void PLL_Interrupt_Handler(void) { 
    PERIPHERAL.AC_PLL->STATUS__REG = 0x1F; 
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        Controller_Interrupt(); 
      esi_interrupt_acknowledge_mask(PERIPHERAL_INTERRUPT__MASK__AC_PLL); 
} 
 

ROM and RAM    
The memory-model is 32 bits wide and is byte-addressable using appropriate byte-access load/store instructions. 
There are 24 addressing bits, but for 32-bit word accesses the 2 least significant address bits are ignored. 

Memory map 
The HSA8000 memory map is listed in the following table below: 
 

Address Description 

0x000000 - 0x000FFF ROM (4 kB) 

0x020000 - 0x027FFF RAM0 (32 kB) 

0x028000 - 0x02FFFF RAM1 (32 kB) 

0x800000 - 0xFFFFFF AMBA 

 

Internal ROM 

The HSA8000 internal ROM is 4 kB of on-chip ROM, organized as 1k 32-bit words. The internal ROM starts at 
address 0x000000. When the processor resets, it starts executing instructions from this ROM. The ROM-based 
routines include: 

 initialization - stack pointer, exception vectors, watchdogs 

 self-checks - ROM checksum, RAM test, flash code checksum 

 flash-boot-load instructions into the RAM from external flash memory connected to the 
SPI, check the checksum, and if OK jump to the first instruction. 

Internal SRAM 

The HSA8000 internal SRAM is organized into two adjacent 32 kB blocks (64 kB total), in von-Neumann 
mode. 

AMBA Structure access 

Memory addresses from 0x800000 to 0xFFFFFF map to the embedded AMBA Structure bus. HSA8000 
complies with the AMBA 4 standard. Accesses to AMBA-space must be 32-bit word aligned (the two least-
significant-bits of the address must be zero). An exception is generated when unaligned accesses are attempted.  
Details for each of the set of registers within each Structure is provided in the HSA8000_Register Map document. 

Flash memory 

HSA8000 contains 256 kB flash memory. The Huada Test and Control Tool User's Guide and the Huada Test 
and Control Tool Programmer's Guide details the compilation and debug environment for building loads that 
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are downloaded into the HSA8000 flash memory for auto-booting. The flash memory is accessed serially 
through the SPI interface, which is connected to the CPU through the AMBA bus, like any other peripheral. At 
reset, the bootloader (located in ROM) will copy the executable image of the code from the flash into the RAM 
and will launch it in execution. 
 
 

Switching Engine    
The Switching Engine is one of the most important HSA8000 blocks. It is used to control the power switches of 
different applications such as DC/DC convertors, DC-AC invertors, battery chargers, and others. The high-level 
block diagram of the HSA8000 Switching Engine block is shown in Figure 13. The Switching Engine block has 
four main blocks: Event Control, Fault Processor, Timing Engine, and Driver Control.  

   
Figure 13 - High level block diagram of HSA8000 Switching Engine 

Event Control block  

The Event Control block consists of 16 Event Channels. Every channel has an Event Processor and a Window 
Control block. The function of Event Control block is to select up to 16 signals from the Source Bus, process them 
and output up to 16 events. The Source Bus includes signals from Analog Sensing blocks, Digital blocks (ADC, 
timing engine) and any GPIO.  
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Event Processor 

The Event Processor[x] block diagram (x is from 0 to 15 - the channel number) is shown in  Figure 14.   
 

  

 Figure 14 - An Even Processor block diagram   

 

 

 

 

 

 

 

 

 

  

 PERIPHERAL.FIELD_NAME Default 
Ax SWE_ECFG->EVENTx_ENABLE__U1 0b 
Bx SWE_ECFG->EVENTx_INPUT__U7 0b 
Cx SWE_ECFG->EVENTx_GLITCH_MODE__U1 0b 
Dx SWE_ECFG->EVENTx_GLITCH_WIDTH__U8 0b 
Ex SWE_ECFG->EVENTx_GLITCH_FILTER_STATUS__U1 r/o 
Fx SWE_ECFG->EVENTx_INVERT__U1 0b 
Gx SWE_ECFG->EVENTx_DISABLE_SOURCE__U1 0b 
Hx SWE_ECFG->EVENTx_TRIGGER_TYPE__U1 0b 
Ix SWE_ECFG->EVENTx_SKIP_COUNT__U7 0b 
Jx SWE_ECFG->EVENTx_TIMEOUT_MODE__U1 0b 
Kx SWE_ECFG-> EVENTx_TIMEOUT_U20 0b 
Lx SWE_ECFG-> EVENTx_DELAY_U10 0b 
Mx SWE_ECFG-> EVENTx_TRIGGER__U1 0b 



 DPD1210 V.1 User Guide 

 

 

28 

The Event processor has a Source Selector that selects any source from the Source Bus. The selection is done by 
Bx. In the table below are the given sources that can be selected.  

0 = CMP0_POS 
1 = CMP0_NEG 
2 = CMP1_POS 
3 = CMP1_NEG 
4 = CMP2_POS 
5 = CMP2_NEG 
6 = CMP3_POS 
7 = CMP3_NEG 
16 = CMP4_POS 
17 = CMP4_NEG 
18 = CMP5_POS 
19 = CMP5_NEG 
20 =  
21 =  
22 = CMP7_POS 
23 = CMP7_NEG 
32 = ADC0_OVR_CH0 
33 = ADC0_OVR_CH1 
34 = ADC0_OVR_CH2 

35 = ADC0_OVR_CH3 
36 = ADC1_OVR_CH0 
37 = ADC1_OVR_CH1 
38 = ADC1_OVR_CH2 
39 = ADC1_OVR_CH3 
40 = ADC2_OVR_CH0 
41 = ADC2_OVR_CH1 
42 = ADC2_OVR_CH2 
43 = ADC2_OVR_CH3 
44 = ADC2_OVR_CH4 
45 = ADC2_OVR_CH5 
46 = ADC2_OVR_CH6 
47 = ADC2_OVR_CH7 
48 = TGEN_EVENT_0 
49 = TGEN_EVENT_1 
50 = TGEN_EVENT_2 
51 = TGEN_EVENT_3 
52 = BKBT_PHASE_1 

 

53 = BKBT_PHASE_2 
54 = BKBT_PHASE_3 
55=0 
64 = GPIO_0 
65 = GPIO_1 
66 = GPIO_2 
67 = GPIO_3 
68 = GPIO_4 
69 = GPIO_5 
70 = GPIO_6 
71 = GPIO_7 
72 = GPIO_8 
73 = GPIO_9 
74 = GPIO_10 
75 = GPIO_11 
76 = GPIO_12 
77 = GPIO_13 
78 = GPIO_14 
79 = GPIO_15 

80 = GPIO_16 
81 = GPIO_17 
82 = GPIO_18 
83 = GPIO_19 
84 = GPIO_20 
85 = GPIO_21 
86 = GPIO_22 
87 = GPIO_23 
88 = GPIO_24 
89 = GPIO_25 
90 = GPIO_26 
91 = GPIO_27 
92 = GPIO_28 
93 = GPIO_29 
94 = GPIO_30 
95 = GPIO_31 
 

 
The selected signal can be optionally glitch-filtered by the Glitch Filter block. Two modes of filtering can be 
selected (Cx): integrating and consecutive.   
For consecutive mode, the filter output toggles to either "1" or "0" when the input signal stays at "1" or "0" for a 
specified consecutive number of clock ticks (10ns). The number of consecutive clock ticks is set in the 
EVENTx_GLITCH_WIDTH (ns) (Dx). If the number is not reached, the filter stays in the same state.  For 
integrating mode, when the input is in “1” an accumulator is incremented until it reaches the number set in 
EVENTx_GLITCH_WIDTH(ns)(Dx), and when the input is in “0” the (same) accumulator is decremented until it 
reaches 0. The output toggles to “1” when the accumulator reaches the number set in 
EVENTx_GLITCH_WIDTH(ns)(Dx), and toggles to”0” when the accumulator reaches 0.   
An event can be triggered by the rising or the falling edge of the input signal (Fx). The source signal can also be 
disabled by using an AND gate (Gx).  The selected event source is considered only after a window is opened by 
the Window Control block (Figure 13).  
There are two modes of generating an event - level or edge (Hx).  When the field EVENTx_TRIGGER_TYPE is 
set to 1 the edge mode is selected. Figure 15 and Figure 16 show the timing diagrams for event generation in edge 
mode on the falling and rising edge respectively.  

  

 
Figure 15 - Timing Diagram for Generating an Event on the Falling Edge 

 

Figure 16 - Timing Diagram for Generating an Event on the Rising Edge 
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When the EVENTx_TRIGGER_TYPE field is set to “0”, level mode is selected. In this case, an event is generated 
if the filter output is already in "1" when the window opens. Figure 16 and Figure 17 show two examples for the 
same input, but two different modes are used: one with edge mode (Figure 16) and the other with the level mode 
(Figure 17).  
 

 
Figure 17 - Timing Diagram for Generating of an Event on the Level Mode 

The window for generating an event is created in the Window Control block (Figure 13).  
The first pulses after the window starts can be skipped. The skipped pulses number is given in the 
EVENTx_SKIP_COUNT (Ix). 
A timeout event can be scheduled if the timeout mode is set (Jx) and a value in the EVENTx_TIMEOUT register 
(Kx) is set. The timeout event is relative to the moment when the external window is turned ON. The timeout is 
intended to operate for safety if the source event does not occur.  
After an event is registered, it can be reported after a programmable delay, if desired. The delay is specified in the 
EVENTx_DELAY register (Lx).  An event can be also triggered by setting EVENTx_TRIGGER field to 1. 
The selected signal from the Source Bus, the filtered and the output signal are connected to SWE_DEBUG for 
testing purpose.  

Window Control block 

Each of the 16 Event Control channels have its associated Window Channel[x], where x is the channel number 
from 0 to 15. An Event processor only looks for the selected event source when its associated window is turned 
ON. Basically, a window is turned ON based on a rising or falling edge of a driver output or a combination of 
those. The Window Triger Bus coming from the eight driver output signals feeds all 16 window control channels 
(see Figure 13). The window is always turned OFF when the associated event occurs (either based on the hardware 
source or on timeout). The output of the windows is connected also to SWE_DEBUG. A Window Channel is 
shown in Figure 18.  
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Figure 18 - A Window Channel of the HSA8000 Window Control block 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
A Window Channel has 8 inputs (DRV0_LS, DRV0_HS … DRV3_HS) coming from the Driver Controller block 
through the Driver Bus.  The inputs opening a window can be selected by the fields (Ax).  The inputs can be also 
inverted before OR-ing (BX). If, for example, the window must be opened when either of two gates are turned ON 
(e.g. DRV0_LS or DRV1_LS are ON) then the user should enable the inputs (DRV0_LS and DRV1_LS) and then 
choose rising edge to trigger the window. Another example, when the window must be turned ON after two gates 
are both turned ON (e.g. DRV0_LS or DRV1_LS are ON); the user should enable the inputs, then invert them, 
then select the falling edge to trigger the window. According to De Morgan's law, by complementing the inputs 
and the output of an OR-gate, the OR-gate will be practically transformed into an AND-gate. 
When changing an inverting register bit, a false event can be created. To prevent from generating a false event, the 
rising/falling block can be inhibited for the first clock cycle after the inversion bit has been changed (Dx).  

 PERIPHERAL.FIELD_NAME Default 
Ax[0] SWE_WCFG->WINDOWx_DRV0_LS_TRIGEGER__U1 0b 
Ax[1] SWE_WCFG->WINDOWx_DRV0_HS_TRIGEGER __U1 0b 

… .       .       . 0b 
Ax[7] SWE_WCFG->WINDOWx_DRV3_HS_TRIGEGER __U1 0b 
Bx[0] SWE_WCFG->WINDOWx_DRV0_LS_INVERT__U1 0b 
Bx[1] SWE_WCFG->WINDOWx_DRV0_HS_INVERT__U1 0b 

… .       .       . 0b 
Bx[7] SWE_WCFG-> WINDOWx_DRV0_HS_INVERT__U1 0b 

Cx SWE_WCFG->WINDOWx_MODE__U1 0b 
Dx SWE_WCFG->WINDOWx_MASK_1CLK_AFTER_STR_U1 0b 
Ex SWE_WCFG->WINDOWx_DELAY_U10 0b 
Fx SWE_WCFG->WINDOWx_FORCE_OPEN__U1 0b 
Gx SWE_WCFG-> WINDOWxFORCE_CLOSE__U1 0b 
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When an edge is detected, the control window starts after a delay set in the WINDOWxDELAY. The purpose of 
the delay is to blank the source for the event after a driver was switched, to prevent generating false events due to 
the noise created when the driver was toggled. 
The beginning and end of a window can be also forced ON or OFF with the software by setting “1” to the 
WINDOWx_FORCE_OPEN and WINDOWx_FORCE_CLOSE fields. 

Timing Engine block 

The time engine block consists of Event Driven Timer and Pulse Width Modulation (PWM) blocks. 

Event Driven Timer 

The events from the Event Processor block are sent to the Event Driven Timer block. These events are used by the 
Event Driven Timer block to create signals for the Driver Controller block (Figure 13). The Event Driven Timer 
block has 4 timers (Event Driven Timer [x], where x is equal from 0 to 3). Every Event Driven Timer has 16 
inputs and one output pair. The signals of the four pairs are sent to the Driver Controller block and also to the 
Interleave Engine (Figure 13). 
The Event Driven Timer[x] block contains two identical blocks EDTx_LS and EDTx_HS (Figure 19). The blocks 
have two selectors and a Flip Flop. The selectors select the turn ON and OFF events for the driver. If necessary, 
the driver can be forced ON and OFF by the controller. The timer can also be disabled after the first event. 
The EDTx_LS and EDTx_HS are also connected to the SWE_DEBUG. 
 

  
 

Figure 19 – An Event Timer block diagram 
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Interleave Engine 

The Interleave Engine is part of the Event Driven Timer block ( 
Figure 20). It has a selector selecting a master phase from the inputs of the four pairs coming from the Event 
Driven Timers.  

 

   

 PERIPHERAL.FIELD_NAME Default 
Ax SWE_EDT->EDTx_HS_TURN_ON_EVENT__U5 0b 
Bx SWE_EDT->EDTx_HS_TURN_OFF_EVENT__U5 0b 
Cx SWE_EDT->EDTx_HS_FORCE_ON__U1 0b 
Dx SWE_EDT->EDTx_HS_FORCE_OFF__U1 0b 
Ex SWE_EDT->EDTx_HS_ENABLE__U1 0b 
Fx SWE_EDT->EDTx_LS_TURN_ON_EVENT__U5 0b 
Gx SWE_EDT->EDTx_LS_TURN_OFF_EVENT__U5 0b 
Hx SWE_EDT->EDTx_LS_FORCE_ON__U1 0b 
Ix SWE_EDT->EDTx_LS_FORCE_OFF__U1 0b 
Jx SWE_EDT->EDTx_LS_ENABLE__U1 0b 

 PERIPHERAL.FIELD_NAME Default 
A SWE_EDT->EDT_INTERLEAVE_ENABLE__U1 0b 
B SWE_EDT->EDT_INTERLEAVE_MODE__U1 0b 
C SWE_EDT->EDT_INTERLEAVE_MASTER__U1 0b 
D SWE_EDT->EDT_SLAVE_MAX_ON_TIME__U2 0b 
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Figure 20 - Event Driven Timer block diagram 

 
 
 
 
 
The operating mode of the Interleave Engine is as follow:  
00 – reserved (do not use) 
01 - two phases (master phase and phase 2 at 180o, and phases 1 and 3 is OFF) 
10 - three phases (master phase, phase 1 at 120o, phase 2 at 240o, and phase 3 is OFF) 
11 – four phases (master, phase 1 at 90o, phase 2 at 180o, and phase 3 at 270o). 
Every face can be forced high and low by the following registers: 
 
 
 
 
 
Figure 21 provides an example of one phase (non-interleaved) mode. In this case, no signal is sent to the event 
source bus. The timers of the pair, chosen as the master, control the switching; the Interleave Engine should be 
disabled. 
 

 
Figure 21 - One Phase (non-interleaved) Mode Waveforms 

Figure 22 provides an example of two-phase interleaved mode. The timers of the pair chosen as the master control 
the switching of the first phase. The engine measures the switching period of the master phase and creates a 
control signal that is sent to the Event Processor (Figure 13) through the Source Bus. The controlling signal 
represents pulses with a period equal to the master switching period but 180o out of phase with respect to the 
master. This controlling signal should be used as the turn ON event of the second phase.  
 

 PERIPHERAL.FIELD_NAME Default 
A SWE_EDT->EDT_INTERLEAVE_ENABLE__U1 0b 
B SWE_EDT->EDT_INTERLEAVE_MODE__U1 0b 
C SWE_EDT->EDT_INTERLEAVE_MASTER__U1 0b 
D SWE_EDT->EDT_SLAVE_MAX_ON_TIME__U2 0b 

PERIPHERAL.FIELD_NAME Default 

SOURCE_BUS->EDT_INTERLEAVE_PHASEx_FORCE_
HIGH__U1 

0b 

SOURCE_BUS->EDT_INTERLEAVE_PHASEx_FORCE_
LOW__U1 

0b 
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Figure 22 - Two Phases Interleave Mode Waveforms 

Figure 23 provides an example of three-phase interleaved mode. The timers of the pair chosen as a master controls 
the switching of the first phase. The engine measures the switching period of the master phase and creates two 
controlling signals that are sent to the Event Processor (Figure 13) through the Source Bus. The first controlling 
signal represents pulses with a period equal to the master switching period. The first signal starts at one third of the 
period. This controlling signal should be used as the turn ON event of the second phase. The second controlling 
signal represents pulses with a period equal to the master switching period. The second signal starts at two thirds 
of the period. This controlling signal should be used as a turn ON event of the third phase. 
 

 
Figure 23 - Three Phases Interleave Mode Waveforms 

An example of three-phase interleaved mode is provided in Figure 24. The timers of the pair chosen as a master 
controls the switching of the first phase. The engine measures the switching period of the master phase and creates 
three controlling signals that are sent to the Event Processor (Figure 13) through the Source Bus to control the 
other three phases. The first controlling signal represents pulses with period equal to the master switching period. 



 DPD1210 V.1 User Guide 

 

 

35 

It starts at one fourth of the period.  This controlling signal should be used as the turn ON event of the second 
phase. The second controlling signal represents pulses with a period equal to the master switching period. It starts 
at the half of the period. This controlling signal should be used as the turn ON event of the third phase. The third 
controlling signal represents pulses with a period equal to the master switching period. The third signal starts at 
three fourths of the period. This controlling signal should be used as the turn ON event of the fourth phase. 

 
Figure 24 - Four phases interleave mode waveforms 

For an example, a master phase can be set by the events coming from the CMPx_POS and CMPx_NEG 
comparators of one of the ANx_CMPx blocks. The CMPx_POS comparator is used as the source for the turn OFF 
event of the switch, while the CMPx_NEG comparator is used as the source for the turn ON of the switch. The 
slave phases are turned ON based on the signals coming from the Interleave Engine and turned OFF based on the 
CMPx_POS comparator.  
Figure 25 to Figure 31 provide different simulation examples for a two-phase interleaved mode. In a real situation 
master and slave phases are shifted 180o, but in these examples, they are shown as being in phase (to be easier to 
visualize how the stability of the slave phase is ensured). It is well known that when using peak control only for 
the interleaved slave phase, it will naturally converge for duty cycles less than 50%, but it will naturally diverge 
for duty cycles greater than 50%. The interleave machine has a special feature to force the slave phase to converge 
for any duty cycle. 
Figure 25 provides waveforms of the master and slave switching waveforms for a two-phase interleaved mode. 
The inductance of the inductor of the master phase, Lm, is equal to the inductance of the slave inductor, LS. The 
master phase switches at a duty cycle smaller than 50%. The master and the slave phase are purposely set out of 
phase at the beginning, to show that after some cycles they are naturally converging and become in phase.  
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Figure 25 - Waveforms of a master (blue) and slave (red) switch forms with D< 50% and Lm = LS 

The inductors from the master phase and slave phase paths are supposed to be equal, but in reality, that will never 
occur; slight differences will be present. Figure 26 provides the waveforms of master and slave switching forms 
for a two phase interleave mode where the inductance of the master phase inductor, Lm, is slightly smaller than the 
inductance of the slave inductor, LS. The master phase switches at a duty cycle smaller than 50%. The master and 
the slave phases are set out of phase at the beginning, but after some cycles they converge and become in phase. 
The two currents will not be exactly equal, but they will be close enough (depending on how close the two 
inductors are). 
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Figure 26 - Waveforms of a master (blue) and slave (light blue) switch forms with D< 50% and Lm>LS 

Figure 27 shows the waveforms of the master and slave switching forms for a two phase interleave mode where 
the inductance of the inductor of the master phase, Lm, is larger than the inductance of the slave inductor, LS. The 
master phase switches at a duty cycle smaller than 50 %. The master and the slave phases are set out of phase from 
the beginning, but after some cycles they converge and become in phase. 
 

 
Figure 27 - Waveforms of a master (blue) and slave (pink) switch forms with D < 50% and Lm < LS 

Figure 28 shows the waveforms of the master and slave switching forms for a two phase interleave mode. The 
master phase switches exactly at 50 % duty cycle. The master and the slave phases are set out of phase from the 
beginning and never naturally converge. In this case, the current waveform finds a quasi-stable solution, which is 
not desired. 
  



 DPD1210 V.1 User Guide 

 

 

38 

 

 
Figure 28 - Waveforms of a master (blue) and slave (rad) switch forms with D = 50% 

Figure 29 shows the waveforms of the master and slave switching forms for a two phase interleave mode. The 
master phase switches at duty cycle higher than 50 %. The master and the slave phases are set in phase at the 
beginning and they naturally diverge.  

 

 

Figure 29 - Waveforms of a master (blue) and slave (pink) switch forms with D = 50% 

To make the slave phase converge to the master for a duty cycle equal and larger than 50%, the dynamic 
maximum ON time (dynamic timeout) mode should be set for the slave. The EDT_SLAVE_MAX_ON_TIME 
field is used to set the slave maximum ON time.  
00 – ON time DIV64 (max ON time is equal to tON + tON /64) 
01 – ON time DIV 32 (max ON time is equal to tON + tON /32) 
10 – ON time DIV 16 (max ON time is equal to tON + tON /16) 
11 – ON time DIV 8 (max ON time is equal to tON + tON /8). 
The bigger the slave max ON time, the bigger the current ripple will be, but the convergence will be faster. It is up 
to the designer to select the max ON time for his system.        
Figure 30 shows the waveforms of the master and slave switching forms for a two phase interleave mode. The 
master phase switches at 50 % duty cycle and a dynamic maximum ON time is used. The master and the slave 
phase are unbalanced from the beginning and they converge after some switching cycles.  
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Figure 31 shows the waveforms of the master and slave switching forms for a two phase interleave mode. The 
master phase switches at duty cycle higher than 50 %. The master and the slave phases are set to be out of phase at 
the beginning and they converge after some switching cycles when dynamic maximum ON time is used.  
 

 
Figure 30 - Waveforms of a master (blue) and slave (read) switch forms with D = 50% and using dynamic maximum ON time  

 
Figure 31 - Waveforms of a master (blue) and slave (read) switch forms with D> 50% for two cases:  

- Dynamic maximum ON time and not dynamic maximum ON time 
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PWM Timer 

The PWM timer block is a part of the HSA8000 Timing Engine (Figure 13). The PWM timing is only controlled 
by the software. It has four channels (CH. x for x equal from 0 to 3); every channel has direct and complementary 
outputs. The PWM timer outputs are connected to the Driver Controller block of the HSA8000 Switching Engine. 
The registers configuring PWM timers are listed below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PWM_ENABLE, PWM_LOAD, and PWM_STATUS registers 
The PWM_ENABLE register enables the channels of the PWM timing engine. The register has four bits, one bit 
for each channel (Ax). Grouping all four bits into one single register allows the user to enable two or more 
channels simultaneously to ensure a defined phase relation between the channels at startup if necessary.  
The PWM_LOAD register loads all PWM parametric registers at once while the timer is operating. The register 
has four bits for the PWM four-output channels (Bx). Similar to the PWM_ENABLE register, grouping the four 
bits into one single register allows the user to enable the loading of two or more channels simultaneously if 
necessary. 
The PWM_STATUS register provides the status of the four PWM channels (Cx). 
The PWM_SYNC register chooses the operation mode: 
000 - All four channels are independent and cannot be synchronized (except at startup) 
001 - CH. 0 and CH.1 are synchronized as a pair, CH.2 and CH.3 are independent 
010 - CH. 0 and CH. 1 are synchronized as a pair, CH. 2 and CH. 3 are synchronized as a pair 
011 - CH. 0, CH. 1 and CH.2 are synchronized, CH. 3 is independent. 
100 - All four channels are synchronized. 

All channels (synchronized or not) can be synchronized at startup. The synchronized channels have some extra 
features which allow them to be kept in synchronous mode while they are running and their (common) frequency 
and/or their relative phase are changed. 
PWM_MODE register 
The PWM timer has two modes of operation: 

- Variable duty; 
- 50 % duty. 

 PERIPHERAL.FIELD_NAME Default 
Ax SWE_PWM->PWMx_ENABLE__U1 0b 
Bx SWE_PWM->PWMx_LOAD__U1 0b 
C SWE_PWM->PWM_SYNC__U3 0b 

Dx SWE_PWM->PWMx_STATUS__U1 0b 

Ex SWE_PWM->PWMx_ON_TIME__U16 0b 
Fx SWE_PWM->PWMx_PERIOD__U16 0b 
Gx SWE_PWM->PWMx_DEADTIME_HS__U16 0b 
Hx SWE_PWM->PWMx_DEADTIME_LS__U16 0b 
Ix SWE_PWM->PWMx_INIT_DELAY__U16 0b 

Jx SWE_PWM->PWMx_PHASE_STEP__U16 0b 

Kx SWE_PWM->PWMx_ON_TIME_PHASE_STEP__U16 0b 

Lx SWE_PWM->PWMx_MODE__U1 0b 



 DPD1210 V.1 User Guide 

 

 

41 

For every channel, the PWM timer has 8 PWM parametric registers defining the pulse parameters. The table below 
shows the register names and their respective functionality (x is the channel number from 0 to 3). 
 
 

Register Name Functionality  
PWMx_ON_TIME Sets the pulse ON duration.  
PWMx_PERIOD Sets the pulse period. 
PWMx_DEADTIME_HS Sets the dead time between LS and HS (t1 

in Figure 32 
 

 

 

 

 

Figure 32) 
PWMx_DEADTIME_LS Sets the dead time for LS rising (t2 in 

Figure 32) 
PWMx_INIT_DELAY Sets the initial delay t3 (Figure 33) 
PWMx_PHASE_STEP Shifts the phase step compared to the 

original t4. (Figure 34) 
PWMx_ON_TIME_PHASE_STEP Duty cycle for one period when the phase 

step is changed (Figure 34) 
 

The PWMx_ON_TIME register represents the ON duration of the x channel in ns. The register has 15 bits for the 
integer part of the ON duration time and 4 bits for the fraction part. It is the only register having a 4-bit fractional 
part; all other PWM registers represent integer numbers (programming resolution is 10 ns). 
Example 1: 
 0x640 --> 100.0 clock ticks  
The integer part is 100 and the fractional part is 0. The ON duration will be 100 clocks.  
Example 2:  
0x648 --> 100.5 clock ticks  
The fraction part and the fractional part is 0.5. The ON duration will be 100 clocks for one switching cycle and 
101 clocks for the next, so the average ON duration is 100.5. 
Example 3: 
0x641 --> 100.0625 clock ticks  
The integer part is 100 and the fractional part is 1/16 = 0.0625. The ON duration for 15 switching cycles is 100 
clock ticks and the ON duration for the next switching cycle is 101 clocks, so the average ON duration is 100 + 
1/16 = 100.0625 clock ticks. The integer resolution of the ON time duration is 10 ns at the nominal clock 
frequency of 100 MHz.  The resolution is 10 ns/16 = 625 ps when factional mode is used. The fractional mode is 
automatically activated when the last nibble of the PWMx_ON_TIME register is non-zero. 
For designers using Helios, the numbers are automatically calculated.  
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The PWM0_PERIOD register represents the duration of the PWM period in ns; it is an integer value between 0 
and 15 bits. 
 
 
 

 

 

Figure 32 shows a time diagram of a PWM channel showing dead times between the complementary and direct 
outputs, t1, and direct and complementary outputs, t2. 
 
 
  

 

 

 

 

 

 

 

Figure 32 - Time diagram of a PWM channel showing dead 
times between the complementary and direct 

outputs 

A channel can have an initial delay, t3, which is the time between moment the enable signal is set and time the 
channel starts pulsing (Figure 33). 

  
Figure 33 - Time diagram of a PWM HS channel showing an output with initial delay 
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Figure 34 shows a time diagram of a PWM timer Ch.x output signal before and after phase shifting. The period of 
the PWM signal is assumed to be T. When a phase shift (t4) occurs, the period of the signal is adjusted for one 
cycle to be T+ t4. After this cycle, the period of PWM timer Ch.x output signal returns to T. If the duty cycle is set 
to 50% (by setting PWMx_MODE register to “1”), then during the switching cycle which creates the phase shift 
the duty cycle is automatically preserved to 50%. Otherwise, for the phase shift cycle, the value of the ON time is 
adjusted with the (signed) value from the PWMx_PHASE_STEP field.  
 
 
 
 
 
 
 

 
Figure 34 - Time diagram of PWM timer CH.x before and after phase shifting 

The parametric registers which are used by the PWM engine can be loaded when the ENABLE register is set to 
“0” and the STATUS register is also cleared.  When the ENABLE register is turned high, the PWM engine starts 
with the loaded parameters. In order to coherently modify the parametric registers while the PWM machine is 
running, the following sequence is recommended: 

- Clear PWM_LOADS register. 
- Modify the desired registers. The new values are stored in temporary buffers and do not affect the PWM 

timing. 
- When done, set the PWM_LOADS register. 
- The STATUS bit (i.e. load pending) is automatically set by the hardware. 
- The new values stored in the temporary buffers are transferred all at once into the inner PWM registers 

just before the PWM is about to start a new switching cycle. 
- When the new values have been loaded into the inner registers, the STATUS bit will be automatically 

cleared. (see Figure 35) 
Clearing the PWM_LOADS register while PWMx_STATUS bit is high will cancel the pending load and will clear 
the status.  
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Figure 35 - Time diagram for using PWM_REGS_READY register for loading the data from the parametric registers 

For debugging purpose, the LS and HS outputs of the PWM timers are connected to SWE_DEBUG. References 
that do not include the delays are also connected to SWE_DEBUG. 

Fault Processing block 

Fault Processing block selects and processes up to 8 faults from the Source Bus (sources from the analog interface 
and I/O block). It has 8 channels. Every channel sends fault signals to the 4 Pair Processors from (Figure 13). 
Figure 36 shows a Fault Channel[x] diagram (x is equal from 0 to 7).  Every channel has a fault selector selecting 
one source signal from the Source Bus. A channel is enabled with (Ax) register. 
 

Figure 36 - A Fault Channel [x] block diagram 

 
 
 
 
 
 
 
 
 
 
The 

selected fault from the Source Bus by selector (Bx) can be optionally glitch-filtered (Cx) and inverted (Ex). The 
signal is then sent to the Latch1 and Latch2 blocks after the XOR gate. Latch1 generates the actual hardware 

 PERIPHERAL.FIELD_NAME Default 
Ax SWE_FCFG->FAULTx_ENABLE__U1 0b 
Bx SWE_FCFG->FAULTx_INPUT__U7 0b 
Cx SWE_FCFG->FAULTx_GLITCH_MODE__U1 0b 
Dx SWE_FCFG->FAULTx_GLITCH_WIDTH__U8 0b 

Ex SWE_FCFG->FAULTx_INVERT__U1 0b 
Fx SWE_FCFG->FAULTx_LATCH_MODE__U1 0b 
Gx SWE_FCFG-> FAULTx_CLEAR__U1 0b 
Hx SWE_FCFG-> FAULTx_STATUS__U1 0b 
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signal to force OFF the selected pair in real time in case of a fault. This latch can operate in two modes (Fx). The 
mode is set by FAULTx_LATCH_MODE bit: 

- 0- transparent; 
- 1 - stiky. 

Latch2 feeds a status register readable through the AMBA bus and it is always a sticky bit. When Latch1 is 
programmed to sticky mode, Latch2 (the readable status bit) will mimic the logic state of Latch1 (actual hardware 
fault signal). However, if Latch1 is programmed in transparent mode, the status will be set along with Latch1 in 
case of fault. The status will remain set even after the fault condition has disappeared to inform the software that 
an actual fault condition occurred and disappeared. Clear of Latch1 and Latch2 can be done by FAULTx_CLEAR 
field (Hx).  
The selected signal from the Source Bus, the filtered and the output signals are connected to SWE_DEBUG for 
debugging.  

Driver Controller block 

As shown in Figure 13, 8 pairs - 4 from Event Driven Timer block and 4 from PWM block are inputs to the Driver 
Controller. The block diagram of the Driver Controller block is shown in Figure 37.  
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Figure 37 - The block diagram of the Gate Control block  

The Driver Controller has 4 selectors that select 4 pairs to be exported to the driver pins. The selection is done 
through the DRIVERx_INPUT register (x is from 0 to 3). The selected timer and their corresponding bits are 
shown in the table below: 
 
 

 

 

 

 

The selected pair is sent to a Pair Processor[x] block whose diagram is shown in Figure 38. 

 Timer 
0 PWM0 
1 PWM1 
2 PWM2 
3 PWM3 
4 EDT0 
5 EDT1 
6 EDT2 
7 EDT3 
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Figure 38 - The block diagram of the Pair Processor block 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 PERIPHERAL.FIELD_NAME Default 
Ax SWE_DRV->DRIVERx_ENABLE__U1 0b 
Bx SWE_DRV->DRIVERx_HS_FORCE__U1 0b 
Cx SWE_DRV->DRIVERx_LS_FORCE__U1 0b 
Dx SWE_DRV->DRIVERx_HS_FORCE_ENABLE__U1 0b 
Ex SWE_DRV->DRIVERx_LS_FORCE_ENABLE__U1 0b 
Fx SWE_DRV-> DRIVERx_PIN_SWAP__U1 0b 
Gx SWE_DRV->DRIVERx_OVERLAP_PROTECTION__U1 0b 
Hx SWE_DRV->DRIVERx_DEADTIME__U8 0b 
Ix SWE_DRV->DRIVERx_HS_INVERT__U1 0b 
Jx SWE_DRV->DRIVERx_LS_INVERT__U1 0b 
Kx SWE_DRV->DRIVERx_OVERLAP_STATUS__U1 0b 
Lx SWE_DRV-> DRIVERx_OVERLAP_STATUS_CLEAR 

__U1 
0b 

Mx SWE_DRV->DRIVERx_FAULT0_ENABLE__U1 0b 
Nx SWE_DRV->DRIVERx_FAULTk_ENABLE__U1 0b 
Ox SWE_DRV->DRIVERx_FAULT7_ENABLE__U1 0b 
Px SWE_DRV->DRIVERx_HS_MODE__U1 0b 
Qx SWE_DRV->DRIVERx_LS_MODE__U1 0b 
R SWE_DRV->DRIVER_PASSWORD__U32 0b 
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To enable the pair processor block, Ax should be set to 1. The selected pair inputs can be overridden by setting the 
force mode bit (Dx for HS and Ex for LS). If the force mode is set to “1” for high side, the value that is set in Bx 
(for HS) and will be forced into the pair processor block output. Similarly, Cx is set for low side. 
The HS and LS output signals can be swapped if necessary (Fx).  The LS and HS outputs will be turned OFF if 
there is a fault on one of the fault condition inputs coming from the Fault Processing block. For this purpose, the 
fault inputs should be enabled (Mx, Nx, …, Ox). 
To prevent the LS and HS switches from simultaneously turning ON, a hardware programmable minimum dead 
time between the two outputs (Hx) is present, ensured by the pair processing block itself.  
In a case when two switches are not used as a HS and LS pair, the overlap protection feature can be disabled (Gx). 
The overlap status is shown in Kx and can be cleared with Lx. 
The output signals, HS and LS, can be inverted (Ix and Jx respectively). They are also sent to SWE_DEBUG. 
The output signals are passed through de-glitching flops before they reach the output pins in order to remove any 
combinatorial glitches. When the overlap protection is disabled, swapping HS/LS and inverting the outputs can have 
disastrous consequences if accidentally programmed erroneously. To avoid this, for every Pair Processing block the 
bits (in red color Figure 45) are grouped into one register, DRIVERx_PROTECTED_SETTINGS which is password 
protected. Therefore, in order to change these bits, the value of the DRIVER_PASSWORD register, common for 
the Pair Processor blocks, must be set to 0x13579BDF before the settings register can be modified. It is highly 
recommended to clear the PASSWORD register once the procedure is finished. Attempting to modify any of the 
protected settings without having the correct password written into the PASSWORD register, will have no effect.  
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Capture (Timing Measurements) block  
The Capture block measures the actual time interval between two processed events, GPIO signals, or any 
combination of those. The block has four channels: Measure Channel x (x = 0 to 3). Each of the channels contains 
three independent registers – current measurement and min/max values – which are continuously refreshed in the 
background. When a read request is issued for a particular channel, the three data registers from that channel will 
be transferred into the AMBA read registers (Figure 39). The AMBA read registers are common for all four 
channels, hence only one channel can be read at the time. The time intervals (measurements) are expressed in 
clock ticks (10 ns). 
 

 
Figure 39 – Capture (Timing Measurements) block diagram 

 

 

 

 

A channel of the Capture block is shown in Figure 40. The channel has two selectors for selecting a start and a 
stop signal for the measurement. The selection is done by STARTx_INPUT and STOPx_INPUT. The 
measurement can be configured to start and stop on either (falling/rising) edge of the selected start/stop signals by 
STARTx_EDGE and STOPx_EDGE. 
After specifying the signal and the rising/falling edge, the next step is to enable the measurement channel 
ENABLEx. When the measurement conditions are met, and the first measurement is available, the CAPTUREDx 
flag is set by the hardware. A read request (READ_REQUEST) for that channel should be issued, which will 

 PERIPHERAL.FIELD_NAME Default 

A CAPTURE->TIME__U32 0b 
B CAPTURE->MAX_TIME__U32 0b 
C CAPTURE->MIN_TIME__U32 0b 
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transfer the most recent measurement into the read buffers and will clear the CAPTUREDx flag. After reading, the 
CAPTUREDx flag will be set again automatically when a new measurement is performed. 

  
Figure 40 - A channel of the Capture (Timing Measurements) block 

 
 
 
 
 
 
 
 
 
If the minimum and/or maximum functions are enabled, the minimum and/or maximum values of the currently 
measured data will be recorded in the dedicated min/max registers.  
The maximum and minimum values can be reinitialized by disabling and then re-enabling the maximum and 
minimum functions respectively. 
  

 PERIPHERAL.FIELD_NAME Default 
Ax CAPTURE->STARTx__U6 0b 
Bx CAPTURE->STOPx__U1 0b 
Cx CAPTURE->STARTx_EDGE__U1 0b 
Dx CAPTURE->STOPx_EDGE__U1 0b 
Ex CAPTURE->ENABLEx__U1 0b 
Fx CAPTURE->ENABLEx_MAX__U1 0b 
Gx CAPTURE-> ENABLEx_MIN__U1 0b 
Hx CAPTURE->CAPTUREDx__U1 0b 
Ix CAPTURE->READx_REQUEST__U1 0b 
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Compare (Timing Generator) 
The Timing Generator can create four signals with the same period but different phases. The period of the pulses 
in ns, is given by the PERIOD register. A tick is equal to 10 ns. The start of every pulse depends of the value 
written in the TIMEx register (x is the output signal number from 0 to 3). The output signals are sent to Source 
Bus and SWE_DEBUG. 
 
 
 
 
 
 
 
The LOAD resister is used to start the sequences. Figure 41 provides an example showing the four outputs when 
the period of the input signals is set to 1 µs.  
TIME0 is set to 200 ns. 
TIME1 is set to 400 ns. 
TIME2 is set to 600 ns. 
TIME3 is set to 800 ns. 
 

 
Figure 41 - Example for Output Signals of Timing Generator 

  

PERIPHERAL.FIELD_NAME Default 

COMPARE->ENABLE__U1 0b 
COMPARE-> LOAD__U1 0b 
COMPARE-> TIMEx_COMP__U16 0b 
COMPARE-> PERIOD__U16 0b 
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AC PLL  
AC PLL block synchronizes the HSA8000 controller with the grid frequency. The basic functions of AC PLL block 
are: 

•  lock on the grid frequency (50/60Hz) based on zero-crossings; 
•  track the drift of the grid frequency up to 0.1 Hz/s; 
• generate an integer multiple of the grid frequency used for processing in the CPU program. 

AC PLL can be used for DC to AC inversion and ensures efficient grid current injection operation or in PFC 
applications to generate grid current reference. The grid voltages are scaled down by voltage dividers and then 
applied to the subtractors inputs (pins AN12_ACP and AN13_ACN).  

 
Figure 42 - Blocks associated with analog inputs AN12_ACP and AN13_ACN. 

The subtractors outputs are inputs to the zero-crossing comparator, ZCC, as shown in Figure 42.  
The block diagram in Figure 43 illustrates the AC PLL main blocks: 

- Glitch filter; 
- Grid frequency measurements; 
- Grid reconstruction; 
- Period divider: 
- Interrupt request (IRQ) generation; 
- Configuration and report registers. 
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Figure 43 - AC PLL block diagram 

To estimate the grid frequency, AC PLL should be set to acquisition mode. During acquisition mode AC PLL is 
not locked. The acquisition mode is performed during HSA8000 start. It also can be forced by the HSA8000 CPU. 

Glitch filter 

For the glitch filter input, ZCC output or any of the GPIOs can be selected. When ZCC is selected, the comparator 
should be enabled.  The AC PLL input configuration is done by field of the INPUT_CONFIG register. 

 

 

 

 

 

The filter can be set to consecutive or integration mode. The glitch filter is controlled by the following fields:  

 

 

 

Grid frequency measurements 

AC PLL can be synchronized with the grid frequency in different programed limits. The period limits are provided 
for 50 Hz and 60 Hz through programmable registers. For each frequency, there are four limits.  
 
 

FIELD_NAME Default  

AC_PLL->ZC_COMP_ENABLE__U1 0x1 Enables ZCC 

AC_PLL->INPUT_SELECT__U1 0x0 
0 - selects ZC comparator  
1 - selects a GPIO  

AC_PLL->INPUT_INVERT__U1 0x0 This bit inverts the strobe going to the comparator. 

AC_PLL->GPIO_PIN_FOR_INPUT__U5 0x0 Select GPIO 

PERIPHERAL.FIELD_NAME Default 

AC_PLL->GLITCH_WIDTH__20ns_U15 0x7FFF 

AC_PLL-> GLITCH_MODE__U1 1b 
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Figure 44 shows the Grid frequency measurement block diagram. The block measures the grid period and locks the 
PLL if the frequency is in the range. For this purpose, the signal from the glitch filer is applied to the “Capture grid 
rising and falling edges” block. The outputs of the block are the negative and positive grid durations. From the two 
durations, period and asymmetry are calculated in the “ADD/Subtract” block and their values are stored in the report 
registers. When the period is in the wide limits for time, tlock, PLL enables smaller limits locking mode. The wide 
period limits and the lock time are set by the used in the config registers. The durations, period and asymmetry 
values are reported by the report registers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The period limits for 50 Hz and 60 Hz can be programed by a user. For example, if the user wants the wide range 
frequency f to be 47 Hz, then the period is: 

𝑇 =
1

𝑓
=

1

47
= 21,276,595 𝑛𝑠. 

PERIPHERAL.FIELD_NAME Default 

AC_PLL-> MAX_50HZ_WIDE_PERIOD__REG 0x103B95 

AC_PLL-> MIN_50HZ_WIDE_PERIOD__REG 0xE6524 

AC_PLL-> MAX_60HZ_WIDE_PERIOD__REG 0xD6288 

AC_PLL-> MIN_60HZ_WIDE_PERIOD__REG 0xC1C32 

AC_PLL-> LOCK_DELAY__REG 0x20 

AC_PLL-> 
REPORT_HALF_PERIOD_POSITIVE_WIDTH__REG 0x0 

AC_PLL-> 
REPORT_HALF_PERIOD_NEGATIVE_WIDTH__REG 0x41 

AC_PLL-> REPORT_PERIOD_WIDTH__REG 0x41 

AC_PLL-> REPORT_PERIOD_ASYMETRY__REG 0x3FFFBF 
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Since 1 clock is 20 ns, the value that should be written in the register will be: 
T/20 =1063829 = 0x103B95. 

When the “smaller limits locking mode” is enabled, the calculated period and asymmetry are filtered by 1st order 
low pass filter and then checked with the smaller range limits given in the config registers. The period limits and the 
low pass filter alpha parameter can be programed by the user. The filtered period and asymmetry are reported by the 
report registers. 
 
 
 
 
 
 
 
 
 
 
 
The output of the Grid frequency measurement block is the filtered frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44 - Grid frequency measurement block diagram 

PERIPHERAL.FIELD_NAME Default 

AC_PLL-> MAX_50HZ_PERIOD__REG 0x103B95 

AC_PLL-> MIN_50HZ_PERIOD__REG 0xEF5A8 

AC_PLL-> MAX_60HZ_PERIOD__REG 0xCEE61 

AC_PLL-> MIN_60HZ_PERIOD__REG 0xC81D8 

AC_PLL-> PERIOD_ASYMETRY_ALPHA__REG 0x4000 

AC_PLL-> PERIOD_FILTER_ALPHA__REG 0x4000 

AC_PLL-> REPORT_FILTERED_PERIOD_WIDTH__REG 0 

AC_PLL-> REPORT_FILTERED_PERIOD_ASYMETRY__REG 0 
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Grid regenerations 

The grid regeneration block diagram is shown in Figure 45. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 45 - Grid regeneration block diagram 

The filtered period from the “Grid Frequency Measurement” block is sent to the “Grid regeneration” block for grid 
regeneration. The grid and the regenerated grid are dual phase/frequency detectors (PFD) for compensating any 
asymmetries due to imperfect rising edge/falling edge timing matching of ZCC and not exactly 0 threshold.  
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The detected phase errors by PFDs are filtered by a 2-taps comb filter to completely cancel the asymmetries due to 
the grid comp offset and due to the differences between rising and falling edges and a 1st order low-pass filter after 
the comb which guarantees stability.  
Grid regeneration counter is: 

– real-time frequency and phase programmability; 
– when measured frequency and phase are steady for a certain period of time, the counter is preloaded 

with the best estimate of the frequency, initial phase, and the PFDs are enabled; 
– it generates interrupts at the rising edge of the grid signal; 
– the reconstructed grid can be observed through DEBUG BUS.   

Once the PLL is locked: 
– it tracks the frequency as long as the Grid frequency measurement block is in “smaller limits 

locking mode”; 
– short term grid glitches are reported to the software immediately, but are not fed to the filters nor 

PFDs, therefore the grid regenerator keeps running with the previous frequency and phase; 
– software decides what short-term means and forces a new acquisition or not. 

Period divider 

Period divider block diagram is shown in Figure 46. The regenerated grid period is used as reference for the period 
divider. 

– the regenerated grid has 50% duty (or very close) of filtered period; 
– the period division is recalculated at every half-grid cycle; 
– rising edge of the divided signal is detected and sent to create an interrupt; 
– the divider output can be seen through DEBUG BUS. 

–  
 

Figure 46 – Period divider block diagram 

The period is divided by a number, N, set by SAMPLES_PER_GRID_PERIOD. The number can be 32, 64, 128, 
256, 512, and 1024. The divider output is a sequence of N pulses (samples). By default, the samples per grid 
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period is 256. Every sample sets IRQ to the CPU. During operation, the sample number can be seen by 
SAMPLE_NUMBER register.  

For debugging, DEBUG_SAMPLE_NUMBER_OUTPUT register is used.  The register sets the sample number 
that will be output on DEBUG.  

 

 

 

 

IRQs generation 

PLL generates interrupts by signals coming from the Rising Edge detector of the Period divider block (Figure 45) 
and Grid generation of the Grid reconstruction block (Figure 46). Enabling IRQs generation is done by the 
following fields: 
 
 

Anti- islanding  

During islanding, the divided period 
is artificially set slightly smaller within each half grid period. As a result, the phase error accumulates during the 
current grid half period. If the grid is driving the PLL, then the phase error is reset at the beginning of a new half 
grid while if the PLL is driving the grid, then the resonant component of the (missing) grid drives the next comparator 
edge sooner and sooner and the frequency eventually goes out of limits. 

AC PLL status 

The PLL status is checked by the CPU by reading the STATUS register. When a condition to generate an interrupt 
request is met, the corresponding interrupt flag in the register is set. The flag is set regardless of the state of the 
interrupt enable bit from register IRQ_ENABLES, but the hardware IRQ (interrupt request) is generated only if the 
interrupt enable bit is set. The interrupt service routine reads the IRQ flags to detect which event generated the IRQ, 
and then it must 
clear the corresponding flag by writing a 1 into the corresponding control bit. The STATUS register fields and their 
descriptions are given below: 

PERIPHERAL.FIELD_NAME Default 

AC_PLL-> SAMPLES_PER_GRID_PERIOD__REG x3 

AC_PLL-> SAMPLE_NUMBER__REG  

AC_PLL-> DEBUG_SAMPLE_NUMBER_OUTPUT__REG 0 

PERIPHERAL.FIELD_NAME Default 

AC_PLL-> RECONSTRUCTED_AC_CROSSING_IRQ_ENABLE__U1 1 

AC_PLL-> RECONSTRUCTED_AC_SAMPLES_IRQ_ENABLE__U1 1 

FIELD_NAME Default  
 AC_CROSSING_IRQ__U1 0x0 IRQ capture grid flag status bit. Write 1 to clear. 

RECONSTRUCTED_AC_CROSSING_IRQ__U1 0x0 
IRQ capture reconstructed grid status bit. Write 1 to 

clear 

RECONSTRUCTED_AC_SAMPLES_IRQ 0x0 
IRQ compare frequency multiplier flag status bit. 
Write 1 to clear. 

NO_GRID 0x0 Grid not detected status bit. 

WIDE_PERIOD_IN_RANGE 0x0 Grid measurement period fast in range status bit. 

FILTERED_PERIOD_IN_RANGE 0x0 
Grid measurement period filtered in range status 
bit. 

WIDE_PERIOD_TRACKING 0x0 Grid measurement period fast mode status bit. 
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NOT_LOCKED 0x0 Grid reconstruct not locked status bit. 

GRID_COMP_FILTERED 0x0 Grid comparator filtered status bit. 

FREQUENCY_MODE 0x0 
Grid measurement period 50 Hz detected status bit. 
0 = 60 Hz 
1 = 50 Hz 

AC_PHASE 0x0 
Grid reconstruct positive status bit. 
0 = NEGATIVE 
1 = POSITIVE 
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Serial Peripheral Interface 
The HSA8000 Serial Peripheral Interface (SPI) implements full-duplex, synchronous, serial communications, 
and has the following capabilities: 

 master operation 

 programmable word size (8 or 16-bits), bit ordering (MSB first / LSB first), clock polarity and 
phase, and bit rate 

Figure 47 shows a block diagram of the HSA8000 SPI. 
 

 
Figure 47 - SPI block diagram 

Data to be transmitted over the serial interface should be written to the TX_DATA register. The register should not 
be written to while the TX_FULL bit in the STATUS register is set, 
otherwise data loss may occur. When the BIT_SIZE field in the CONTROL register is set to 0, only the lower 8-
bits of data written to the register are transmitted, when the field is set to 1, 16-bits of the data are transferred. 
Data that is received over the serial interface can be read in the RX_DATA register. When the BIT_SIZE 
field in the CONTROL register is set to 0, only the lower 8-bits of the register contain valid data. 
The STATUS register contains a selection of flags that indicate the current status of the SPI. To clear a bit in the 
register, write a 1 to it. Writing 0 will leave it unchanged. In table below is given names, decryptions and values its 
fields: 
 

Fail Name Description Values 
TX_EMPTY Transmits buffer empty. 0 - Not empty 

1 - Empty 
TX_FULL Transmits buffer full 0 - Not full 

1 - Full 
TX_OVERFLOW Transmits buffer overflow 0 - No overflow 

1– Overflow 
TX_UNDERRUN Transmits buffer underrun 0 - No underrun 

1 - Underrun 
RX_EMPTY Receives buffer empty 0 - Not empty 

1 - Empty 
RX_FULL Receives buffer full 0 - Not full 

1 - Full 
RX_OVERFLOW Receive buffer overflow 0 - No overflow 

1– Overflow 
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The CONTROL register contains a selection of flags that control the operation of the SPI. In table below is given 
names, decryptions and values of its fields: 

Fail Name Description Values 
ENABLE 
 

Enables the SPI. When disabled, data will 
not be received or transmitted. 

0 - Disabled 
1 - Enabled 

MODE Operating mode 0 - Master 
1 - Slave  

WORD_SIZE Word size 0 - 8-bits 
1 - 16-bits 

BIT_ORDER Bit ordering 0 - MSB first 
1 - LSB first 

CLOCK_EDGE Clock polarity 0 - Idle low 
1 - Idle high 

IDLE_STATE Transmit interrupt enable 0 - Disabled 
1 - Enabled 

TX_IRQ_ENABLE Transmit interrupt enable 0 - Disabled 
1 - Enabled 

RX_IRQ_ENABLE Receive interrupt enable 0 - Disabled 
1 - Enabled 

 
BIT_WIDTH shows how many ns is each UART bit. The bit duration is reciprocal of the baudrate. Since the 
baudrate is 115200, the value of the BIT_WIDTH register in ns is: 

BIT_WIDTH register =
ଵ

ଵଵହଶ
ౘ౪

౩

= 8680 𝑛𝑠  

The BIT_WIDTH  
The value of the BIT_WIDTH register, depends on the CPU clock frequency, CPUClk, and the baudrate, BR. 
Since, the CPU clock frequency is 50 MHz and the BIT_WIDTH register in clock cycle is: 

BIT_WIDTH register = 8680 ∗ 10ିଽ 𝑠 ∗ 50 000 000
ୡ୪୭ୡ୩

ୱ
= = 434 clocks /bit =1B2(HEX) 

DEVICE_SELECT is a single bit used to control the GPIO14_SEN output (for bootloader portability), otherwise 
the user can use any available GPIO to generate SEN function. 

UART interface 
There are two UARTs in the HSA8000. UART0, connected by default as alternate function to pins 
GPIO8_TX0 and GPIO9_RX0, is a general purpose one. UART1 is connected by default as alternate function 
to pins GPIO10_HDLC_TX1 and GPIO11_HDLC_RX1.  It can be used as a general purpose one, or it can be 
configured to work with the hardware HDLC interface.  
The UARTs have the following capabilities: 

 7 or 8 data bits 
 1 or 2 stop bits 
 parity bit (None / Even / Odd / Mark / Space) 
 programmable bit rate 

Figure 48 shows a block diagram of the HSA8000 UARTs. 
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Figure 48 - UART interface block diagram 

UART0 

Data to be transmitted over the serial interface should be written to the lower 8 bits of the 
TX_DATA register. The register should not be written to while the TX_FULL bit in 
the STATUS register is set, otherwise data loss may occur. 
Data that is received over the serial interface can be read in the lower 8 bits of the RX_DATA register. 
The STATUS register contains a selection of flags that indicate the current status of the UART. To clear a bit in 
the register, write a 1 to it. Writing 0 will leave it unchanged. In table below is given names, decryptions and 
values its fields: 
 

Fail Name Description Values 
TX_EMPTY Transmits buffer empty. 0 - Not empty 

1 - Empty 
TX_FULL Transmits buffer full 0 - Not full 

1 - Full 
TX_OVERFLOW Transmits buffer overflow 0 - No overflow 

1– Overflow 
RX_EMPTY Receives buffer empty 0 - Not empty 

1 - Empty 
RX_FULL Receives buffer full 0 - Not full 

1 - Full 
RX_OVERFLOW Receive buffer overflow 0 - No overflow 

1– Overflow 
RX_PARITY Parity error 0 - No error 

1 - Parity error 
RETRY_LIMIT_REACHED Retry limited reached. 0 – Not reached 

1 – Reached 
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The CONTROL register contains a selection of flags that control the operation of the UART. In table below is 
given names, decryptions and values of its fields:  
 

Fail Name Description Values 
ENABLE 
 

Enables the UART. When disabled, data 
will not be received or transmitted. 

0 - Disabled 
1 - Enabled 

STOP_BITS Number of stop bits 0 - 1 stop bit 
1 - 2 stop bits 

DATA_BITS Number of data bits 0 - 8 data bits 
1 - 7 data bits 

PARITY_MODE Parity bit control 0 - No parity bit 
1 - Even parity 
2 - Odd parity 
3 - Mark 
4 - Space 

FLOW_CONTROL Flow control 0 - No flow control 
1 - RTS/CTS 

BREAK Transmit break. When set, the transmit 
data line will be held low, signaling a 
break 

0 - Do not send break 
1 - Send break 

TX_IRQ_ENABLE Transmit interrupt enable 0 - Disabled 
1 - Enabled 

RX_IRQ_ENABLE Receive interrupt enable 0 - Disabled 
1 - Enabled 

RX_BREAK_IRQ_ENABLE Receive break interrupt enable 0 - Disabled 
1 - Enabled 

LIMIT_REACHED_IRQ_ENABLE Retry limited reached interrupt enabled 0 - Disabled 
1 - Enabled 

DUPLEX Duplex 0 – Full duplex 
1 – Half duplex 

 
BIT_WIDTH is a 16-bit register that specifies how many cycles of the CPU clock, each bit is transmitted for. Use 
of a 16-bit register provides support for a wide range of clock frequencies and baud rates. 
 

UART1 HDLC 

TX_CONTROL is the HDLC control field to be transmitted. 
TX_ADDRESS shows the HDLC address field to be transmitted. 
TX_DATA shows the HDLC data field to be transmitted. Writing to this field will trigger a transmission of 
an HDLC packet that consists the current contents of the control (TX_CONTROL), address (TX_ADDRESS) and 
data (TX_DATA) fields.  
RX_CONTROL shows the HDLC control field of the last received HDLC packet. 
RX_ADDRESS is the HDLC address of the last received HDLC packet. 
RX_DATA - HDLC data field of the last received HDLC packet. Reading this field will send an 
acknowledgement to the RX framer thereby enabling the receipt of the next packet. Until this field is read, the RX 
framer will hold off all new incoming packets. Pending packets will be stored in the RX FIFO.  
RX_CRC - HDLC cyclic redundancy check of the last received HDLC packet. 
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The fields of the CONTROL register control UART1 HDLC. In the table below are given names, decryptions and 
values of its fields: 
 

Fail Name Description Values 
CLEAR_COUNTERS Clear both TX_PACKET_COUNT and 

RX_PACKET_COUNT registers. This bit 
is self clearing therefore will always read 
back as '0'. 

0 – Read back 
1 - Clear 

PARITY_MODE Parity control 0 - Even parity 
1 - Odd parity 

PARITY_ENABLE Enables parity insertion on the UART 
byte transmission and parity checking on 
the UART byte reception/ 

0 - Disabled 
1 - Enabled 

HDLC_ENABLE Enable HDLC framers. Both fields: 
UART_ENABLE and HDLC_ENABLE 
need to be set for proper HDLC 
operation. 

0 - Disabled 
1 - Enabled 

UART_ENABLE Enable the UART interface 0 - Disabled 
1 - Enabled 

 
Status register has two fields that provide flow control information: 
TX_BUSY – is 1 when the TX framer is busy transferring the HDLC packet to the UART 
interface (via the TX FIFO). If the TX FIFO is full, the TX framer will keep TX_BUSY 
until the complete HDLC packet is transferred successfully. 
RX_READY is 1 when data is ready to be read.  

- During non-HDLC operation, RX_READY register signals that RX_DATA register is ready to be read.  
- During HDLC operation, RX_READY indicates that RX_CONTROL, RX_ADDRESS, RX_DATA and 

RX_CRC are ready to be read. RX_READY will remain in 1 until RX_DATA is read thereby 
acknowledging to the RX framer that data was received. 
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I2C serial interface 

The HSA8000 has an I2C-compatible master interface which implements a subset of the I2C protocol 
with the following restrictions:  

-          Master only (no slave supported) 

-          7-bit address space only 

-          No clock stretching 

-  Only 1 or 2 bytes of data (programmable through a register, default 2) 
Read/write messages are sent in the following format: 
 1 byte device address 
 1 byte register address 
 1 or 2 bytes of data (programmable,). 

Data to be transmitted over the I2C interface should be written to the WRITE register. 
The Write register should not be written to while the BUSY bit in the DATA_AND_STATUS register is 
set, otherwise data loss may occur. 
WRITE register consist of three fields: 
- WRITE_DATA – the size of the transmitted data depends on setting of the DATA_MODE field.  
The data bits can be either 16 bits, when DATA_MODE is set to 1, or 8 bits when is set to 0. 
- WRITE_REG_ADDRESS – shows the 8 bits register address within the device the data should be transmitted. 
- WRITE_DEV_ADDRESS – shows 7 bits device address to which the data should be transmitted. 
Data that is received over the I2C interface can be read in the READ register. The register has two fields: 
READ_REG_ADDRESS shows 8 bits register address within the device the data should be read from. 
READ_DEV_ADDRESS shows 7 bits device address from which the data should be read. 
The DATA_AND_STATUS register contains of the following flags: 
- DATA – shows the data read from an I2C read cycle, when transfer is completed i.e. the BUSY flag goes back to 

0.  
- CLOCK_STATUS – shows the status of the I2C clock. When the flag shows 1 the clock is disabled, when 0, the 

clock is enabled. 
- BUSY – the flag stays 1 while a I2C transfer is in progress, goes to 0 when the transfer is done. 
- ERROR - the flag is set/cleared after each I2C transfer, depending if there were any I2C errors during the 

transfer. 
CLOCK_ DISABLE - writing a '1' in the filed disables the I2C clock; writing a '0' enables the clock (default is 0). 
PRESCALLER register shows the I2C clock division ratio with respect to the CPU clock. 
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Watchdog  

The watchdog’s main purpose is to watch over the user program and make sure that it is executing properly. It will 
produce a signal which resets all digital circuitry including the CPU if it is not fed within the set timeout period. 
Feeding the watchdog is achieved by writing specific values to the “bone” registers. Typically, the user program 
writes one of the bones in the main routine and the other bone in the interrupt routine. If either routine is not 
running due to a stalled loop or the lack of CPU cycles, then a reset will be initiated which may allow the system 
to recover. Figure 49 shows HSA8000 watchdog system a block diagram. 

 

 
Figure 49- HSA8000 Watchdog system block diagram. 

Watchdog Registers 

The watchdog registers are defined in watchdog.h and visible in the Helios GUI application under the 
WATCHDOG structure. 

PERIPHERAL->FIELD Type POR Value 

WATCHDOG->ENABLE__U1 WO OFF 
WATCHDOG->POR_INDICATOR_CLEAR__U1 WO OFF 
WATCHDOG->WD_INDICATOR_CLEAR__U1 WO OFF 
WATCHDOG->PWRON_WATCHDOG_DISABLE__U1 WO OFF 
WATCHDOG->ENABLED__U1 RO OFF 
WATCHDOG->POR_INDICATOR__U1 RO ON 
WATCHDOG->WD_INDICATOR__U1 RO OFF 
WATCHDOG->PWRON_WATCHDOG_ENABLED__U1 RO ON 
WATCHDOG->BONE0_FAIL__U1 RO OFF 
WATCHDOG->BONE1_FAIL__U1 RO OFF 
WATCHDOG->TIMEOUT__U32 RW 0xFFFFFFFF 
WATCHDOG->BONE0__U32 WO 0 
WATCHDOG->BONE1__U32 WO 0 
WATCHDOG->PRESERVED__U32 RW 0 

Watchdog Functions and Features 

Power-on Watchdog 

The watchdog guards against improper booting by starting in a special mode. The user software must disable the 
power-on watchdog after booting by setting PWRON_WATCHDOG_DISABLE. If this is not set, then a 
watchdog reset will occur after 85 seconds. 

Watchdog 

The watchdog cannot be disabled once it is enabled. BONE0 must be written with 0x1234ABCD and BONE1 
must be written with 0x5678CDEF within the timeout period to prevent a reset. The timeout value which counts 
CPU cycles is reloaded only after both bones have been written so changing this value does not immediately 
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change the actual timeout in progress. Whichever bone(s) have not been written since the counter was reloaded, 
and therefore caused the reset, will be indicated by the bone fail values.  

Preserved Value 

The PRESERVED register will not be cleared by a watchdog reset. It however will be cleared during a power-on 
reset. This register could be used as a counter register to track the number of watchdog resets which have occurred 
since the last power-on reset or store a specific value to be recalled when the software reboots. It would be up to 
the software to increment the value or write a specific value to this register to be preserved. 

Power-on Reset Indicator 

POR_INDICATOR is set during a power on reset and only cleared by setting the POR_INDICATOR_CLEAR. A 
subsequent watchdog reset will not clear this value. An external device which communicates with the software 
could clear this value. If it is later found to be set, then a power-on reset has occurred, and appropriate actions 
could be taken. 

Watchdog Indicator 

WD_INDICATOR will be set when the hardware reset was the result of a watchdog reset as opposed to a power-
on reset. A subsequent power-on reset will clear this value. This can be cleared by software using 
WD_INDICATOR_CLEAR as a way of indicating that the watchdog reset has been serviced. Clearing this value 
also clears the bone fail flags. 

Math Accelerators Block    
The Math Accelerator Block includes three blocks that perform mathematical function necessary for calculating. 
The blocks functionality is explained below: 

MATH_SQRT 

ARGUMENT register 
The number to be square rooted is written to the ARGUMENT register. By writing to it, a BUSY flag is set, and 
the SQRT state machine is started automatically. The operation takes up to 16 clock ticks at the Peripheral clock 
rate 100 MHz to complete the calculation. The BUSY flag is cleared automatically after the calculation is done. 
The operation duration depends on the operand effective size: 

- up to 16 bits for 8 clock ticks 
- 17 to 24 bits for 12 clock ticks 
- 25 to 32 bits for 16 clock ticks. 

The machine automatically detects the effective size of the operand and decides the cycles number necessary to be 
completed.  
RESULT_TRUNC and RESULT_ROUND registers 
After the operation is completed, the result truncated and rounded values are written in the RESULT_TRUNC and 
RESULT_ROUND registers. 
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MATH_DIVIDER 

NUMERATOR and DENOMINATOR registers 

The numerator and denominator are written in the NUMERATOR and DENOMINATOR registers respectively. 
Both numbers are 32 bits unsigned. The result is 64 bits, with 32 bits integer part and 32 bits fractional part. If the 
denominator is “0” then the result will be filled with all ones. By writing to any of the NUMERATOR OR 
DENOMINATOR registers, a BUSY flag is set, and the divider state machine is started automatically. Writing to 
any of these operand registers before the calculation is completed will abort the current calculation and restart a 
new one with the new data. The operation takes about 22 clock cycles at 100 MHz Peripheral clock rate. The 
BUSY flag is cleared automatically when the calculation is done.  

TRUNC_INTEGER and TRUNC_FRACTIONAL register 
The result of the integer and fractional parts of the division result is written in the TRUNC_INTEGER and 
TRUNC_FRACTIONAL correspondingly.  The TRUNC_FRACTIONAL result in this register is truncated with 
respect to the last binary decimal.  

MATH_SIN_COS 

ARGUMENT register  
The register represents the angle of the desired sin and cos, which is quantized on 10 bits. A value of “0” 
represents 0o, a value of “512” represents 180o, and the max value, “1023”, represents 359.6484375o. A value of 
1024 would represent 360o, but in this implementation, it will wrap down to 0. Writing to the ARGUMENT 
register triggers the state machine and the result is available in the very next AMBA cycle so a busy flag is not 
necessary. 
RESULT_SIN and RESULT_COS registers  
The registers show the results of sin and cos of the written in the ARGUMENT register.  
The SIN (COS) register contains the truncated sin (cos) value of the argument. The result is in 16-bit two’s 
complement format.  
Example: 
sin (256) produces 32767  
sin (512+256) produces -32767 
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Timer 
There are two 32-bit counters in the timer block. The main purpose is to generate real-time interrupts, but they can 
be used to generate flexible periodic signals too. The counters are clocked at the same speed as the CPU which is 
typically 50 MHz. Timer block diagram is shown in Figure 50. 

 

 

Figure 50 - Timer block diagram 
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Timer Registers 

The timer block registers are shown in the table below: 

 PERIPHERAL->FIELD Type POR Value 

Ax TIMER-> COUNTx_ENABLE__U1 WR OFF 
Bx TIMER-> COUNTx__REG RO  
Cx TIMER_>COUNTx_COMP0__REG WO  
Dx TIMER_>COUNTx_COMP1__REG WO  
Ex TIMER_>COUNTx_COMP2__REG WO  
Fx TIMER_> COUNTx_COMP3_PERIOD__REG WO  
Gx TIMER-> COUNTx_COMP0_EQUAL_ENABLE__U1 WR OFF 
Hx TIMER-> COUNTx_COMP1_EQUAL_ENABLE__U1 WR OFF 
Ix TIMER-> COUNTx_COMP2_EQUAL_ENABLE__U1 WR OFF 
Jx TIMER-> COUNTx_COMP3_EQUAL_ENABLE__U1 WR OFF 
Kx TIMER->COUNTx_COMP0_EQUAL RO OFF 
Lx TIMER->COUNTx_COMP1_EQUAL RO OFF 
Mx TIMER->COUNTx_COMP2_EQUAL RO OFF 
Nx TIMER->COUNTx_COMP3_EQUAL RO OFF 
Ox TIMER->COUNTx_COMP0_EQUAL_CLEAR__U1 WO OFF 
Px TIMER->COUNTx_COMP1_EQUAL_CLEAR__U1 WO OFF 
Qx TIMER->COUNTx_COMP2_EQUAL_CLEAR__U1 WO OFF 
Rx TIMER->COUNTx_COMP3_EQUAL_CLEAR__U1 WO OFF 
Sx TIMER->COUNTx_COMP0_EQUAL_IRQ_ENABLE__U1 WR ON 
Tx TIMER->COUNTx_COMP1_EQUAL_IRQ_ENABLE__U1 WR OFF 
Ux TIMER->COUNTx_COMP2_EQUAL_IRQ_ENABLE__U1 WR ON 
Vx TIMER->COUNTx_COMP3_EQUAL_IRQ_ENABLE__U1 WR OFF 

  x = 0 and 1. 

The counters are enabled by the corresponding Ax bit. Each counter goes from 0 up to the value set in Fx register 
minus 1 before reloading. The value of the counter can be seen in Bx register. There are another three registers (Cx, 
Dx, and Ex) providing counts for comparison. To enable comparison, corresponding bit of the COMP block (Gx, 
Hx, Ix and Jx) should be set to 1. When an equal event occurs, the corresponding bit (Kx, Lx, Mx, and Nx) is set to 
1. This bit can be cleared only in the software by writing 0 to corresponding bit (Ox, Px, Qx and Rx). Every equal 
event can create an interrupt request when the corresponding bit is enabled (Sx, Tx, Ux, and Vx). 

Timer Functions and Features 

Compare values 

Four compare values create an EQUAL signal when they match1 the count. If the EQUAL_ENABLE is set, then 
the EQUAL flag will be set in the register for the software to read and clear. 

COUNTx_COMP3_PERIOD matches when the value in COUNTx register is equal to 
COUNTx_COMP3_PERIOD – 1. after that, the counter is reset. 

Interrupt Requests 

If the IRQ_ENABLE is set, then the processor will be interrupted when the EQUAL flag is set provided that the 
interrupt mask has also been set. The CPU interrupt mask for the timer can be set with the following command: 
esi_interrupt_set_mask(esi_interrupt_get_mask() | PERIPHERAL_INTERRUPT__INDEX__TIMER); 
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Debug Signals 

For every counter, two debug signals are derived from the COMP_EQUAL flags: 

- TIMER_COUNTx_0_1_EQUAL is set when COMP0 equals the count and clears when COMP1 equals the 
count. 

- TIMER_COUNTx_2_3_EQUAL is set when COMP2 equals the count and gets cleared when the counter 
reaches its final count.  

The actual hardware signal when observed is delayed by one clock period. 

The EQUAL signals can be forced high or low with the following registers: 

PERIPHERAL->FIELD Type POR Value 

SOURCE_BUS -> COMPARE_TIMEx_EQUAL_FORCE_HIGH__U1 WO OFF 
SOURCE_BUS -> COMPARE_TIMEx_EQUAL_FORCE_LOW__U1 WO OFF 

where  x = 0 -3. 

Timer Example: 

Let’s enable the counters, and IRQ bits and set the following registers: 
TIMER->COUNT0_COMP0__REG = 20; 
TIMER->COUNT0_COMP1__REG = 30; 
TIMER->COUNT0_COMP2__REG = 40; 
TIMER-> COUNT0_COMP3_PERIOD__REG = 100; 

 
Counter 0 will count from 0 to 99 and then will start over from 0. 
There will be an event when the counter reaches 20, then 30, 40 and finally when it reaches 99. 
The register TIMER->COUNTx_COMP0_EQUAL will be automatically set to 1, when the counter is equal to 20. 
It can be cleared by setting 0 to TIMER->COUNTx_COMP0_EQUAL_CLEAR__U1.  
For the example above, TIMER_COUNTx_0_1_EQUAL will be set high set when the counter reaches 20 and it is 
cleared when the counter reaches 30.  TIMER_COUNTx_2_3_EQUAL will be set high when the counter reaches 
40 and it is cleared when the counter reaches 99. 
See section DEBUG to observe the signals out on the debug pins. 
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I/O Block    
The I/O block controls the functionality of the digital input/output pins: The GPIO pins can be configured as: 

- Push-pull outputs 
- Open-drain outputs 
- Inputs with optional pull-up or pull-down. 

The HSA8000 has 32 GPIOs. In addition to the basic IO functions, to every GPIO can be assigned an alternate 
function, i.e. to be connected to a hardware peripheral (either an input or an output).  
GPIO0 to GPIO7 are slightly different than GPIO8 to GPIO31, since they have faster dedicated paths to export the 
driver signals. GPIOx Block (x = 0 to 7) is shown in Figure 51. GPIO0 to GPIO7 can export the driver signals 
coming from the Driver Controller block when Px and Qx fields of the Pair Processor block (Figure 38) are set to 1. 
By default, the drivers are enabled (Px and Qx fields are set 1). The fast driver paths are illustrated in Figure 51. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 51 - The block diagram of GPIOx Block (x = 0…7) 

GPIOx Block (x = 8 to 31) is shown in Figure 52. The blocks do not have special driver paths and therefore, the 
gate drivers cannot be exported on these GPIOs.   
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Figure 52 - The block diagram of GPIOx Block (x = 8 … 31) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 PERIPHERAL.FIELD_NAME Default 
Ax GPIO->OUTPUTx__U1 0b 
Ax GPIO-> OUTPUTx_SET__U1 0b 
Ax GPIO->OUTPUTx_CLR__U1 0b 
Ax GPIO-> OUTPUTx_TOGGLE__U1 0b 
Bx GPIO-> DIRECTIONx__U1 0b 
Bx GPIO->DIRECTIONx_OUTPUT__U1 0b 
Bx GPIO->DIRECTIONx_INPUT__U1 0b 
Cx GPIO->PULL_UPx__U1 0b 
Dx GPIO->PULL_DOWNx__U1 0b 
Ex GPIO->OUTPUTx_INVERT__U1 0b 
Fx GPIO->INPUTx__U1 0b 
Gx GPIO->ALT_FUNCx__U5 xb 
Hx GPIO->RISING_EDGEx_IRQ_ENABLE__U1 0b 
Ix GPIO->FALLING_EDGEx_IRQ_ENABLE__U1 0b 
Jx GPIO->RISING_EDGEx_IRQ__U1 0b 
Kx GPIO->RISING_EDGEx_IRQ_CLEAR__U1 0b 
Lx GPIO->FALLING_EDGEx_IRQ__U1 0b 
Lx GPIO->FALLING_EDGEx_IRQ_CLEAR__U1 0b 
Mx GPIO->JTAG_ENABLE__U1 0b 
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Every GPIO block has an Alternate Function selector. The selector has 27 inputs. The signals from different 
hardware blocks are connected to the selectors’ inputs. The following table shows the alternate function names. 
 

Selector 
Number 

Alternative Function 
Name 

Selector 
Number 

Alternative Function 
Name 

Selector 
Number 

Alternative Function 
Name 

0  GPIO  9 UART TXD 18 UART HDLC RX1 
1 DEBUG_SIGNAL0 10 UART RXD 19 DIG DAC 0 
2 DEBUG_SIGNAL1 11 SPI SEN 20 DIG DAC 1 
3 DEBUG_SIGNAL2 12 SPI SCK 21 DIG DAC 2 
4 DEBUG_SIGNAL3 13 SPI SDO 22 DIG DAC 3 
5 DEBUG_SIFNAL4 14 SPI SDI 23 DIG DAC 4 
6 DEBUG_SIGNAL5 15 I2C SDA 24 DIG DAC 5 
7 DEBUG_SIGNAL6 16 I2C SCK 25 DIG DAC 6  
8 DEBUG_SIGNAL7 17 UART HDLC TX1 26 DIG DAC 7 

 
When ALT_FUNCx is set to 0 (i.e. plain GPIO), then the direction (input/output) and the pull-up or pull-down 
controls of the selected pin can be programmed through the associated registers from the GPIO block. When 
another alternative function is selected, the controls (I/O, pull-up/down) are determined by the specific alternate 
function which is selected and cannot be programmed manually. 

 
ALT_FUNCx register (x = 0 to 31) is associated with each GPIO. 
OUTPUT register holds the programmed state of the GPIO pins configured as outputs. For instance, writing the 
value 0x00000005, sets GPIOs 0 and 2, and clears the rest (except the GPIOs which are assigned an Alternate 
Function). Reading back the register returns the programmed state of the GPIOs, not the actual state of the GPIO 
pin. For example, if GPIO2 was shorted to ground in the hardware, reading the OUTPUT register will return the 
value “1” for GPIO2 (the programmed value) and not “0” which is the true state of the GPIO2 in the hardware. 
OUTPUT_SETS register sets the GPIOs. For example, writing the value 0x00000010 sets GPIO4 and leaves all 
the other GPIOs unchanged. 
OUTPUT_CLEARS register clears GPIOs. For example, writing the value 0x00000014, clears GPIO4 and GPIO2, 
and leaves all the other GPIOs unchanged. 
OUTPUT_TOGGLES toggle the GPIOs with ones and leaves the others unchanged. 
OUTPUT_INVERTS register inverts the signal coming from the Data selector. 
To Output a signal to the pin the following registers are used: 
DIRECTIONS register enables the outputs. When the bit is set to “1” the GPIO is configured as an output, “0” the 
GPIO is configured as an input. For example, writing the value 0x000000F0 into the register configure GPIOs 4…7 
as outputs and the rest as inputs. 
DIRECTION_OUTPUTS register set GPIOs enable. Writing, for example, 0x00000001 into it configures GPIO0 
as an output and leaves the others with their previous configuration (direction).  
DIRECTION_INPUTS register clears the GPIOs direction. Writing 0x00000002 into the register configures 
GPIO1 as an input and leaves all other GPIOs with their previous configuration. 
For GPIOs configured as inputs, optional pull-up or pull-down internal resistors can be connected if desired, in 
accordance with the following two registers: PULL_UP and PULL_DOWN. 
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INPUTS register reads the actual state of the GPIOs. The main purpose of this register is to read the state of the 
GPIOs configured as inputs. However, it can be used to read the actual state of the outputs as well and check, if 
desired, if the programmed state of the output matches the actual hardware value from the board. 

Digital DAC  
HSA8000 has 8 digital DACs. The digital DACs can function in either PWM or Sigma-Delta modes.  A register 
controls the DACs clock frequency. When the DAC is set in PWM mode, a register can set the duty cycle. The 
maximum value is when the register is set to 0x400 which responds to 100%. Setting the register to 0x200, the 
duty cycle is 50% and setting to 0x00 the duty cycle is 0%.  Every digital DAC can be exported on a GPIOx pin (x 
= 0-31) by setting its ALT_FUNCx.  
In the table below are the field names for the digital DACs (x = 0 to 7). 
 
 
 
 
 
 
 
1Mode: 0b = SIGMA DELTA, 1b = PWM. 
2Setting the DAC clock frequency: 00= Sets to 100 MHz; 01= Divide by 4 (25 MHz); 10 = Divide by 8 (12.5 MHz); 11 = Divided by 16 (6.25 MHz) 
3Setting the DAC duty cycle: 0 to 1024. Example: 0 = 0%; 256 = 0x100 = 25%; 526 = 0x200 = 50%, 768=0x300=75%; 1024 =x0x400 =100%.  
 

In table below is shown the numbers that should be selected in the ALT_FUNCx for the corresponding digital 
DAC to be exported. 

 

Selector 
Number 

Alternative Function Name 

19 DIG DAC 0 
20 DIG DAC 1 
21 DIG DAC 2 
22 DIG DAC 3 
23 DIG DAC 4 
24 DIG DAC 5 
25 DIG DAC 6  
26 DIG DAC 7 

 

 

PERIPHERAL.FIELD_NAME Default 

DIGITAL_DAC->DACx_ENABLE__U1 0b 
DIGITAL_DAC->DACx_MODE__U21 0b 
DIGITAL_DAC->DACx_PRESCALLER__U12 0b 
DIGITAL_DAC->DACx_DUTY__U103 0b 
GPIO->ALT_FUNCx__U5 xb 
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DEBUG  
HSA8000 is designed to export signals in real-time. Figure 53 shows three selectors used for signals debugging.  

 

 
Figure 53 HSA8000 Debug block 

 
 
 
 
 
In the table above x = 0 to 7 and y =0 to 31. 
The SWE_DEBUG block has eight selectors Ax that select signals from the Switching Engine Block.   
0 = CMP0_POS_COMP 
1 = CMP0_NEG_COMP 
2 = CMP1_POS_COMP 
3 = CMP1_NEG_COMP 
4 = CMP2_POS_COMP 
5 = CMP2_NEG_COMP 
6 = CMP3_POS_COMP 
7 = CMP3_NEG_COMP 
16 = CMP4_POS_COMP 
17 = CMP4_NEG_COMP 
18 = CMP5_POS_COMP 
19 = CMP5_NEG_COMP 
20 =  
21 =  
22 = CMP7_POS_COMP 
23 = CMP7_NEG_COMP 
24 = ADC0_AN0_COMP_STATUS 
25 = ADC0_AN1_COMP_STATUS 
26 = ADC0_AN2_DCOMP_STATUS 
27 = ADC0_AN3_COMP_STATUS 
28 = ADC1_AN12_FLT_COMP_STATUS 

 PERIPHERAL.FIELD_NAME Default 

Ax SWE_DEBUG->DEBUG_SIGNALx__U8 0b 
Bx DEBUG->SIGNALx__U8 0b 
Cy GPIO->ALT_FUNCy__U5 0b 
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29 = ADC1_AN13_FLT_COMP_STATUS 
30 = ADC1_AN12_BUF_COMP_STATUS 
31 = ADC1_AN13_BUF_COMP_STATUS 
32 = ADC2_CHANNEL0_COMP_STATUS 
33 = ADC2_CHANNEL1_COMP_STATUS 
34 = ADC2_CHANNEL2_COMP_STATUS 
35 = ADC2_CHANNEL3_COMP_STATUS 
36 = ADC2_CHANNEL4_COMP_STATUS 
37 = ADC2_CHANNEL5_COMP_STATUS 
38 = ADC2_CHANNEL6_COMP_STATUS 
39 = ADC2_CHANNEL7_COMP_STATUS 
40 = COMPARE_TIME0_EQUAL 
41 = COMPARE_TIME1_EQUAL 
42 = COMPARE_TIME2_EQUAL 
43 = COMPARE_TIME3_EQUAL 
44 = SWE_EDT_INTERLEAVE_PHASE1 
45 = SWE_EDT_INTERLEAVE_PHASE2 
46 = SWE_EDT_INTERLEAVE_PHASE3 
64 = SWE_DRIVER0_LS 
65 = SWE_DRIVER0_HS 
66 = SWE_DRIVER1_LS 
67 = SWE_DRIVER1_HS 
68 = SWE_DRIVER2_LS 
69 = SWE_DRIVER2_HS 
70 = SWE_DRIVER3_LS 
71 = SWE_DRIVER3_HS 
72 = SWE_EDT0_HS 
73 = SWE_EDT0_LS 
74 = SWE_EDT1_HS 
75 = SWE_EDT1_LS 
76 = SWE_EDT2_HS 
77 = SWE_EDT2_LS 
78 = SWE_EDT3_HS 
79 = SWE_EDT3_LS 
80 = SWE_PWM0_LS 
81 = SWE_PWM0_HS 
82 = SWE_PWM1_LS 
83 = SWE_PWM1_HS 
84 = SWE_PWM2_LS 
85 = SWE_PWM2_HS 
86 = SWE_PWM3_LS 
87 = SWE_PWM3_HS 
88 = SWE_PWM0_REFERENCE  
89 = SWE_PWM1_REFERENCE 
90 = SWE_PWM2_REFERENCE 
91 = SWE_PWM0_REFERENCE  
92 = SWE_FAULT0 
93 = SWE_FAULT1 
94 = SWE_FAULT2 
95 = SWE_FAULT3 
96 = SWE_FAULT4 
97 = SWE_FAULT5 
98 = SWE_FAULT6 
99 = SWE_FAULT7 
104 = SWE_FAULT0_SELECTED_SOURCE_RAW 
105 = SWE_FAULT1_SELECTED_SOURCE_RAW 
106 = SWE_FAULT2_SELECTED_SOURCE_RAW 
107 = SWE_FAULT3_SELECTED_SOURCE_RAW 
108 = SWE_FAULT4_SELECTED_SOURCE_RAW 
109 = SWE_FAULT5_SELECTED_SOURCE_RAW 
110 = SWE_FAULT6_SELECTED_SOURCE_RAW 
111 = SWE_FAULT7_SELECTED_SOURCE_RAW 
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112 = SWE_FAULT0_SELECTED_SOURCE_FLT 
113 = SWE_FAULT1_SELECTED_SOURCE_FLT 
114 = SWE_FAULT2_SELECTED_SOURCE_FLT 
115 = SWE_FAULT3_SELECTED_SOURCE_FLT 
116 = SWE_FAULT4_SELECTED_SOURCE_FLT 
117 = SWE_FAULT5_SELECTED_SOURCE_FLT 
118 = SWE_FAULT6_SELECTED_SOURCE_FLT 
119 = SWE_FAULT7_SELECTED_SOURCE_FLT  
128 = SWE_WINDOW0 
129 = SWE_WINDOW1 
130 = SWE_WINDOW2 
131 = SWE_WINDOW3 
132 = SWE_WINDOW4 
133 = SWE_WINDOW5 
134 = SWE_WINDOW6 
135 = SWE_WINDOW7 
136 = SWE_WINDOW8 
137 = SWE_WINDOW9 
138 = SWE_WINDOW10 
139 = SWE_WINDOW11 
140 = SWE_WINDOW12 
141 = SWE_WINDOW13 
142 = SWE_WINDOW14 
143 = SWE_WINDOW15 
144 = SWE_EVENT0 
145 = SWE_EVENT1 
146 = SWE_EVENT2 
147 = SWE_EVENT3 
148 = SWE_EVENT4 
149 = SWE_EVENT5 
150 = SWE_EVENT6 
151 = SWE_EVENT7 
152 = SWE_EVENT8 
153 = SWE_EVENT9 
154 = SWE_EVENT10 
155 = SWE_EVENT11 
156 = SWE_EVENT12 
157 = SWE_EVENT13 
158 = SWE_EVENT14 
159 = SWE_EVENT15 
160 = SWE_EVENT0_INPUT 
161 = SWE_EVENT1_INPUT 
162 = SWE_EVENT2_INPUT 
163 = SWE_EVENT3_INPUT 
164 = SWE_EVENT4_INPUT 
165 = SWE_EVENT5_INPUT 
166 = SWE_EVENT6_INPUT 
167 = SWE_EVENT7_INPUT 
168 = SWE_EVENT8_INPUT 
169 = SWE_EVENT9_INPUT 
170 = SWE_EVENT10_INPUT 
171 = SWE_EVENT11_INPUT 
172 = SWE_EVENT12_INPUT 
173 = SWE_EVENT13_INPUT 
174 = SWE_EVENT14_INPUT 
175 = SWE_EVENT15_INPUT 
176 = SWE_EVENT0_FILTERED_INPUT 
177 = SWE_EVENT1_FILTERED_INPUT 
178 = SWE_EVENT2_FILTERED_INPUT 
179 = SWE_EVENT3_FILTERED_INPUT 
180 = SWE_EVENT4_FILTERED_INPUT 
181 = SWE_EVENT5_FILTERED_INPUT 
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182 = SWE_EVENT6_FILTERED_INPUT 
183 = SWE_EVENT7_FILTERED_INPUT 
184 = SWE_EVENT8_FILTERED_INPUT 
185 = SWE_EVENT9_FILTERED_INPUT 
 The DEBUG selector can select the following signals: 
0 = LOW 
1 = HIGH 
2 = 50 MHz 
3 = RX0 
4 = 100 MHz 
5 = ADC0_CLK 
6 = ADC1_CLK 
7 = ADC2_CLK 
8 = ADC0_BUSY 
9 = ADC1_BUSY 
10 = ADC2_BUSY 
11 = ADC2_SUMPLE_HOLD 
12 = TIMER_COUNTER0_0_1_EQUAL 
13 = TIMER_COUNTER0_2_3_EQUAL 
14 = TIMER_COUNTER1_0_1_EQUAL 
15 = TIMER_COUNTER1_2_3_EQUAL 
16 = SWE_DBG_DEBUG_SIGNAL0 
17 = SWE_DBG_DEBUG_SIGNAL1 
18 = SWE_DBG_DEBUG_SIGNAL2 
19 = SWE_DBG_DEBUG_SIGNAL3 
20 = SWE_DBG_DEBUG_SIGNAL4 
21 = SWE_DBG_DEBUG_SIGNAL5 
22 = SWE_DBG_DEBUG_SIGNAL6 
23 = SWE_DBG_DEBUG_SIGNAL7 
25 = RX1 
26 = TX1 
42 = AC_PLL_sync_grid_comp 
43 = AC_PLL_comp_filtered 
44 = AC_PLL_out_of_range 
45 = AC_PLL_compare_0_pulse 
46 = AC_PLL_compare_1_pulse 
47 = AC_PLL_phdet_re_up_pulse 
48 = AC_PLL_phdet_re_dn_pulse 
49 = AC_PLL_phdet_fe_up_pulse 
50 = AC_PLL_phdet_fe_dn_pulse 
51 = AC_PLL_reconstruct_not_locked 
52 = AC_PLL_reconstruct_positive 
53 = AC_PLL_reconstruct_be 
54 = AC_PLL_fmul_pulse 
55 = AC_PLL_sample_pulse 
56 = AC_PLL_sample_N 
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Documentation Support  
DPD1126-4_HSA8000_IXC2_HW_and_Register_Users_Guide 

DPD1144-2_HSA8000_IXC2_Register_Map 

 


